ESPOONRggac Enforcing Security Policies
in Outsourced Environments

Muhammad Rizwan Asgh#f, Mihaela loi¢, Giovanni Russelly Bruno Crisp6é

8CREATE-NET, International Research Center, Trento Italy
bDepartment of Computer Science, The University of Aucklandkland New Zealand
®Department of Information Engineering and Computer Saetumiversity of Trento, Trento Italy

Abstract

Data outsourcing is a growing business mod&iing services to individuals and enterprises for proogsand storing a huge
amount of data. It is not only economical but also promisghdii availability, scalability, and morefective quality of service
than in-house solutions. Despite all its benefits, dateooutsng raises serious security concerns for preservityatmfidentiality.
There are solutions for preserving confidentiality of datalevsupporting search on the data stored in outsourcedamaents.
However, such solutions do not support access policiegidate access to a particular subset of the stored data.

For complex user management, large enterprises employBaded Access Controls (RBAC) models for making access de-
cisions based on the role in which a user is active in. HoweRBAC models cannot be deployed in outsourced environments
as they rely on trusted infrastructure in order to regulatesas to the data. The deployment of RBAC models may revealter
information about sensitive data they aim to protect. 1a ff@per, we aim at filling this gap by proposiB§POONRggacfor enforc-
ing RBAC policies in outsourced environmeniSPOOMggac enforces RBAC policies in an encrypted manner where a csiriou
service provider may learn a very limited information abBBRAC policies. We have implement&&SPOONggac and provided
its performance evaluation showing a limited overheads ttanfirming viability of our approach.

Keywords: Encrypted RBAC, Policy Protection, Sensitive Policy Edion, Secure Cloud Storage, Confidentiality;

1. Introduction 1.1. Motivation

Solutions for providing access control mechanisms in out-
sourced environments have mainly focused on encryptidn tec
In recent years, data outsourcing has become a very atgactinNiques that couple access policies with a set of keys, such as
business model. ItfEers services to individuals and enterprisesthe one described il [10]. Only users possessing a key (dr a se
for processing and storing a huge amount of data at very lof hierarchy-derivable keys) are authorised to access atee d
cost. It promises higher availability, scalability, andnm@f- ~ The main drawback of these solutions is that security pegici
fective quality of service than in-house solutions. Mangtses ~ are tightly coupled with the security mechanism, thus iriogr
including government and healthcare, initially reluctantlata high processing cost for performing any administrativengea
outsourcing, are now adopting it [25]. for both the users and the policies representing the acicgss.r
Despite all its benefits, data outsourcing raises serious se A pohcy-bas_ed SOIUF'On’ such th_e one described for the Pon-
curity concerns for preserving data confidentiality. Thama der language 'HES]’ is more flexible and easy to manage be-

problem is that the data stored in outsourced environmeats geauselt clearly separates the security policies from theree-

within easy reach of service providers that could gain umaut mgnt mechanlts;n. Howgvter, pohci/—l:.)asef accesz conFrglmech
rised access. There are several solutions for guaranteeimng anisms are not designed o operate in outsourced envirdsmen

fidentiality of data in outsourced environments. For ins&gn Such solutions can work only when they are deployed and op-

solutions as those proposed E[19feo a protected data erated within a trusted domain (i.e., the computationairenv

storage while supporting basic search capabilities pexadron men:‘ mgnaged by ﬂ:e orga3|stat|on ovx;mn? tdhe de_lta). I tfsetsr:a
the server without revealing information about the storathd mechanisms are outsourced to an untrusted environment, the

However, such solutions do not support access policiesgto re access policies that are to be enforced on the server mainteak

late the access to a particular subset of the stored data. formgnon onthe dgta they are prot_e cting. As an exampleslet
consider a scenario where a hospital has outsourced itdhheal

care data management services to a third party servicedaovi
_ _ We assume that the service provider is honest-but-cursos,
Email addressesasghar@create-net . org (Muhammad Rizwan ilar to the existing literature on data outsourcing (sucfLa$),
Asghar),ion@create-net.org (Mihaela lon),
g.russelloCauckland. ac.nz (Giovanni Russello), i.e., itis honest to perform the required operations asrdest
crispo@disi.unitn.it (Bruno Crispo) in the protocol but curious to learn information about stiooe

Preprint submitted to Computeés Security July 4, 2013

exchanged data. In other words, the service provider does nof ESPOOMgreac Sectior b and Sectidd 6 focus on solution

preserve data confidentiality. A patient’s medical recévotd details and algorithmic details, respectively. Sedilomaviges

be associated with an access policy in order to prevent an uisecurity analysis dESPOONRrpac Sectiorf 8 analyses the per-

intended access. The data is stored with an access policy. Asrmance overhead &SPOONRggac Finally, Sectiori P con-

an example, let us consider the following access policyly a cludes this paper and gives directions for the future work.

Cardiologist may access the datrom this policy, it is possi-

b!g to infer important informatiop about the yser’s medtrm{i- 2 Related Work

ditions (even if the actual medical record is encrypted)isTh

policy reveals that a patient could have heart problems. &« mi Work on outsourcing data storage to a third party has been

behaving service provider may sell this information to kmnk focusing on protecting the data confidentiality within the-o

that could deny the patient a loan given her health condition sourced environment. Several techniques have been pibpose
Now-a-days, the most widely used security model is Role-allowing authorised users to perfornflieient queries on the

Based Access Controls (RBACI?)/]30 that makes decision baseencrypted data while not revealing information on the dath a

on role in which a user is active iEﬂ24]. However, the currentthe quew@udjéﬂ 9,17, Eiﬂ,é’] 27,81, 13]. However,ghes

variants of RBAC model cannot be deployed in outsourced entechniques do not support the case of users havitigrdnt ac-

vironments as they assume a trusted infrastructure in @eder cess rights over the protected data. Their assumption s tha

regulate access on data. In RBAC models, RBAC policies mapnce a user is authorised to perform search operations ther

leak information about the data they aim to protect. Asgtiar are no restrictions on the queries that can be performednend t

al. [|1|] proposeESPOONthat aims at enforcing authorisation data that can be accessed.

policies in outsourced environments. They exté&&POON The idea of using an access control mechanism in an out-

[El] to support RBAC policies and role hierarchies [2]. How- sourced environment was initially explored m[ﬁl 12]. st

ever, they consider that the role assignment is performabdéry approach, Vimercagt al. provide a selective encryption strat-

Company RBAC Manager, which is run in the trusted environ-egy for enforcing access control policies. The idea is telav

ment. selective encryption technique where each user haferet
key capable of decrypting only the resources a user is autho-
1.2. Research Contributions rised to access. In their scheme, a public token catalogue ex

. . resses key derivation relationships. However, the pualia-
In this paper, we presentan RBAC mechanism for outsource% ue contains tokens in the clear that express the keyat&niv
environments where we support full confidentiality of RBAC 9 P

plces. W ramed cur SkESPOOrec Enfrcing Se-*TLCU1S, 11 kers o o iomton n acessaont
curity Policies in OutsOurced envirOnmeNts with Encrypted!o P j

RBAC). One of the main advantages BEPOONRascis that information leakage, |rm0] Vimercagi al. provide an encryp-

we maintain the clear separation between RBAC policies anHOn layer to protept the public token c_atalogue. This rezgi
each user to obtain the key for accessing a resource by $raver

the actual enforcing mechanism without loss of policies-con. S o .
. S .) . ing the key derivation structure. The key derivation stiuets
fidentiality under the assumption that the service provider

honest-but-curious. Our approach allows enterprises te ou? graph built (using access key hierarchiés [3]) from a &abs

. . . . -.access matrix. There are several issues related to thimsche
source their RBAC mechanisms as a service with all the benefit_. . - L .

; . i . : L irst, the algorithm of building key derivation structuseviery
associated with this business model without compromidieg t

confidentiality of RBAC policies. Summarising, the resdarc tl_me consuming. Any adm|n|st_rat|ve actions to updatg auces
N~ g ; rights require the users to obtain new access keys derioed fr
contributions of our approach are threefold. First, theviser

provider does not learn anything about RBAC policies and thethe rebuilt key derivation structure and it consequentjuies

) : : : data re-encryption with new access keys. Therefore, thenseh
requester’s attributes during the policy deployment oliaa .) : .
. . . is not very scalable and may be suitable for a static enviesrtim
tion processes. SeconSPOONRrgacis capable of handling
. - ” where users and resources do not change very often. Second,
complex contextual conditions (a part of RBAC policies) in- .-
) .) . the scheme does not support complex policies where contex-
volving non-monotonic boolean expressions and range egleri

Third, the system entities do not share any encryption kegls a ftual information may b_e used for gr_ann_ng access rlghts. For
. : S instance, only specific time and location information asged
even if a user is deleted or revoked, the system is still able

to perform its operations without requiring re-encryptioh with an access request may be legitimate to grant access to a

- . user.
RBAC policies. As a proof-of-concept, we have implemented Another possible approach for implementing an access con-
a prototype of our RBAC mechanism and analysed its perfor: P bp P 9

. . : trol mechanism is protecting the data with an encryption
mance to quantify the overhead incurred by cryptographic op)
erations used in the proposed scheme. s_cheme Wher_e the kgys can be ge_nerateq from the user’s ereden
tials (expressing attributes associated with that usdthofigh
these approaches are not devised particularly for outedwe-
vironments, it is still possible to use them as access cbntro
The rest of this paper is organised as follows: Sedflon 2 remechanisms in outsourced settings. For instance, a receht w
views the related work. Sectidd 3 provides an overview ofoy Narayaret al. [IZ] employ the variant of Attribute Based
RBAC models. Sectiofil4 presents the proposed architectutencryption (ABE) proposed iﬂﬂ[S] (i.e., Ciphertext PolicBE,

2

1.3. Organisation

or CP-ABE in short) to construct an outsourced healthcase sy making a role activation request. In RBAC, a session keeps
tem where patients can securely store their Electronicthleal mapping of users to roles that are active.
Record (EHR). In their solution, each EHR is associated with In [@], Sandhtet al. extend the basic RBAC model with role
secure search index to provide search capabilities whdesgnd ~ hierarchies for structuring roles within an organisatiofhe
teeing no information leakage. However, one of the problemsoncept of role hierarchy introduces the role inheritaha¢he
associated with CP-ABE is that the access structure, reptes role inheritance, a derived role can inherit all permissirom
ing the security policy associated with the encrypted dataot the base role. The role inheritance incurs extra processieg
protected. Therefore, a curious storage provider mighirget head as requested permissions might be assigned to the base
formation on the data by accessing the attributes expraased role of one in which the user might be active.
the CP-ABE policies. The problem of having the access struc- The RBAC model may activate a role or grant permis-
ture expressed in cleartexffects in general all the ABE con- sions while taking into account the context under which the
structions|[20, 18, 26 5]. Therefore, this mechanismissnidt user makes the access request or the role activation request
able for guaranteeing confidentiality of access controicied [2d,[18/38 233, 21]. The RBAC model captures this context by
in outsourced environments. defining contextual conditions. A contextual conditionuizgs
Asgharet al. [1] proposeESPOONHhat aims at enforcing au- certain attributes about the environment or the user matkieg
thorisation policies in outsourced environments EBPOON request. These attributes are contextual informationchumay
a data owner (or someone on the behalf of data owners) magclude access time, access date and location of the useiswho
attach an authorisation policy with the data while storingni making the request. The RBAC model grants the request if the
the outsourced server. Any authorised requester may gessicc contextual information satisfy the contextual conditions
to the data if she satisfies the authorisation policy astetia
with that data. HoweveESPOONacks to provide support for
RBAC policies. In |ﬂ2], Asghaet al. extendedESPOONO sup-

port RBAC policies and role hierarchies. However, [ih [2] the ESPOONMggacaims at providing RBAC mechanism that can
role assignment is performed by the Company RBAC Managekge deployed in an outsourced environment. Fiflire 1 illtesra
which is run in the trusted environment. On the other handthe proposed architecture that has similar Componentsao th
in our current architecture, the role assignment is peréatm widely accepted architecture for the policy-based managem
by the service provider running in the outsourced enviramme proposed by IETF|E5]. In
In other words, we have eliminated the need of an additionatgpoomRBAo anAdmin User deploys (i) RBAC policies and
online-trusted-server i.e., the Company RBAC Manager. sends them to thadministration Point that stores (ii) RBAC
Related to the issue of the confidentiality of the accesg-stru policieﬂ in the Policy Store These policies may include per-
ture, the hidden credentials scheme presentediin [16] sime missions assigned to roles, roles assigned to users andi¢he r
to decrypt ciphertexts while the involved parties neveresdv hierarchy graph that are stored in the Permission Repgsitor
their policies and credentials to each other. Data can be erthe Role Repository and the Role Hierarchy repository,@esp
crypted using an access policy containing monotonic baoleatjvely.
expressions which must be satisfied by the receiver to get ac- A Requestermay send (1) the role activation request to the
cess to the data. A passive adversary may deduce the poli@blicy Enforcement Point(PEP). This request includes the Re-
structure, i.e., the operators (AND, OR, m-of-n threshold e quester’s identifier and the requested role. The PEP fosvard
cryption) used in the policy but she does not learn what cre(2) the role activation request to theolicy Decision Point
dentials are required to fulfill the access policy unlessggi® (PDP). The PDP retrieves (3) the policy corresponding to the
sesses them. Bradsha al. [8] extend the original hidden Requester from the Role Repository of tRelicy Store and
credentials scheme to limit the partial disclosure of thcpo fetches (4) the contextual information from tRelicy Infor-
structure and speed up the decryption operations. However, mation Point (PIP). The contextual information may include
this scheme, it is not easy to support non-monotonic booleathe environmental and Requester’s attributes under whhieh t
expressions and range queries in the access policy. Ldgemi requested role can be activated. For instance, considetexco
credentials schemes assume that the involved parties tme on tyal condition where a role doctor can only be activatedrdyri
all the time to run the protocol. the duty hours. For simplicity, we assume that the PIP ctslec
all required attributes and sends all of them together ingme
Moreover, we assume that the PIP is deployed in the trusted
environment. However, if attributes forgery is an issue, PP
can request a trusted authority to sign the attributes besfend-
RBAC [30] is an access control model that logically Mapsing them to the PDP. The PDP evaluates role assignment poli-
well to the job-function specified within an organisationthe jeg against the attributes provided by the PIP checkinigeif t
basic RBAC model, a system administrator or a secuffiig@r contextual information satisfies contextual conditions sends

assigns permissions to roles and then roles are assigneei U {5 the PEP (5) the role activation response. In casgeofit
A user can make an access request to execute permissions cor-

responding to a role only if he or she is active in that role. A
user can be active in a subset of roles assigned tghleinby Ln the rest of this paper, by terpolicieswe mearRBAC policies

4. The ESPOONggrgac Approach

3. Overview of RBAC Models

Outsourced Environment

Policy Store " Service Provider Session
Policy
Role Role Permission H PDP H Active
Hierarchy Repository Repository N 4 (4b) Roles
(2) (5) Session
/ Role Activation/ Role Information N
Activation
(i) S— Access Request
! W /Access 6b
Policy Response (6b)
(6a) A p Update
- . . — R 0]] 1 Session
Administration Point | PEP |
N N
. (4a)
(I_) Trusted Key (1) (7) Contextual
Policy Request Response .
Management Information
Authority
y
| Admin User | Trusted | Requester | PIP
Trusted Authorised Trusted

Figure 1: TheESPOONMRgacarchitecture for enforcing RBAC policies in outsourcedismwments

the PEP activates the requested role by updatingSeesion Optionally, a response can be sent to the Requester (7) with
containing the Active Roles repository (6a). Otherwisezdse eithersuccessr failure.
of deny the requested role is not activated. Optionally, a re-

sponse can be sent to the Requester (7) with ethecesor ~ The main diference with the standard proposed by IETF
failure. is that theESPOONRgac architecture is outsourced in an un-

trusted environment (see Figurk 1). The trusted envirommen

After getting active in a role, a Requester can make the accomprises only a minimal IT infrastructure that is the appli
cess request that is sent to the PEP (1). This request ircludeations used by the Admin Users and Requesters, together
the Requester’s identifier, the requested data (targethenac- with the PIP. This reduces the cost of maintaining an IT in-
tion to be performed. The PEP forwards (2) the access requeBtstructure. Having the reference architecture in theiatlo
to the PDP. After receiving the access request, the PDPdirst rincreases its availability and provides a better load twaten
trieves from the Session information about the Requesstrdf compared to a centralised approach. In outsourced environ-
is already active in any role (3a). If so, the PDP evaluatdsif ments, ESPOONRrgac guarantees that the confidentiality of
Requester’s (active) role is permitted to execute the retgde policies is protected not only when they are deployed but als
action on the requested data. For this purpose, the PDBuetri when they are enforced. Thisfers a more icient evaluation
(3) the permission assignment policy corresponding to the a of policies. For instance, a naive solution would see the en-
tive role from the Permission Repository of the Policy Stamd crypted policies stored in the cloud and the PDP deployeadn t
fetches (4) the contextual information from the PIP reqlifcr trusted environment. At each evaluation, the encrypteitiesl
evaluating contextual conditions in the permission aseigmt would be sent to the PDP that decrypts the policies for atlear
policy. For instance, consider the example whe@aediologist ~ ext evaluation. After that, the policies need to be enciypied
can access the cardiology report during tifiice hours. The send back to the cloud. THgervice Provider, where the ar-
PDP evaluates the permission assignment policies ag&i@st tchitecture is outsourced, is honest-but-curious. Thismadaat
attributes provided by the PIP checking if the contextudrin the provider allows th&aSPOONRgac cOmponents to follow
mation satisfies any contextual conditions and sends toEfe P the specified protocols, but it may be curious to find out infor
(5) the access response. In caspaimit, the PEP forwards the mation about the data and the policies regulating the aesess
access action to theata Store (6b). In case if no contextual to the data. As for the data, we assume that data confidential-
condition is satisfied, the PDP retrieves the role hierafotiyn ity is preserved by one of the several techniques availaile f
the Role Hierarchy repository of the Policy Store and than tr outsourced environments [13, 27) 31]. However, to the biest o
verses this role hierarchy graph in order to find if any ba#® ro our knowledge, no solution exists that addresses the proble
the Requester’s role might be derived from, has permission tguaranteeing the policy confidentiality while allowing affi-e
execute the requested action on the requested data. Ifeso, thient evaluation mechanism that is clearly separated fiwn t
PEP forwards the access action to the Data Store (6b). Otlpolicies. Most of the techniques discussed in the relatedk wo
erwise, in case ofleny the requested action is not forwarded. section require the security mechanism to be tightly caliple

4

if (CONDITION) then (USER can be active in ({Ry,Ry,..., R.}) if (CONDITION) then (R) can execute ({(A1,T1),(A2,T2),..., (An, TR)

Figure 2: RBAC Policy: Role assignment Figure 3: RBAC Policy: Permission assignment

with the policies. In the following section, we can show that
it is possible to maintain a generic PDP separated from the se
curity policies and able to take access decisions basedeon th
evaluation of encrypted policies. In this way, the policyfio
dentiality can be guaranteed against a curious providettand
functionality of the access control mechanism is not ret&td.

Location=Cardiology-ward

4.1. System Model

Before presenting the detail of the scheme used in
ESPOONRgac it is necessary to discuss the system model. In
this section, we identify the following system entities:

AT* %%

AT:***%Q

AT*Q*** ATA*Q** AT:***Qx

. _ . . AT:** %% AT***1*
e Admin User: This type of user is responsible for the ad-

ministration of pohmes stored in the OUtsourlce.d €NVIrN-Figyre 4: An example of contextual condition illustratiigocation =
ment. An Admin User can deploy new policies or up- Cardiologyward andAT > 9#5 andAT < 17#5
datgdelete already deployed policies.

o Requester: A Requester is a user that requests an acces&2- Rgpresehtation of RBAC Poliq}_éequests
(e.g., read, write or search) over the data residing in the In this section, we provide details about how to represent
outsourced environment. Before the access is permitted)olicies and requests used in our approach. An RBAC pol-

policies deployed in the outsourced environment are evalicy contains a role assignment policy, a permission poling a
uated. a role hierarchy graph. In the following, we discuss each of

them. Figurd R illustrates how we represent role assignment
e Service Provider (SP): The SP is responsible for man- policies in ESPOOMgsac The meaning of role assignment
aging the outsourced computation environment, where thpolicy is as follows: if contextual conditiorCONDITION, is
ESPOONRgac components are deployed and to store thetrue then US ERcan be active in any role(s) out of role set
data, and policies. It is assumed the SP is honest-bufR;, Ry, ..., R,}. Figure3 illustrates how we represent permis-
curious (as [12] does), i.e., it allows the components to fol sion assignment policies IESPOOMggac The meaning of
low the protocol to perform the required actions but curi- permission assignment policy is as follows: if contextuaidi-
ous to deduce information about the exchanged and storgtbn, CONDITION, is true then roleR can execute any permis-
policies. sion(s) out of permission s@tA1, T1), (A2, T2), ..., (An, Th)}.
The PDP evaluates contextual conditions of both role assign
e Trusted Key Management Authority (TKMA): The ment and permission assignment policies before grantiag th
TKMA is fully trusted and responsible for generating and access. In order to evaluate a contextual condition, the PDP
revoking the keys. For each type of authorised users (inrequires contextual information. The contextual inforimmt
cluding an Admin User and a Requester), the TKMA gen-captures the context in which a Requester makes accessor rol
erates two key sets and securely transmits the client keyctivation requests. The PIP collects and sends requirgexo
set to the user and the server key set to the Administratual information to the PDP. To represent contextual coomk,
tion Point. The Administration Point inserts the serveesid we use the tree structure described In [5] for CP-ABE padicie
key set in theKey Store. The TKMA is deployed on the This tree structure allows an Admin User to express conééxtu
trusted environment. Although requiring a TKMA seems conditions as conjunctions and disjunctions of equaldissin-
at odds with the need of outsourcing the IT infrastructure equalities. Internal nodes of the tree structure are AND,0DR
we argue that the TKMA requires less resources and lesthreshold gates (e.g., 2 of 3) and leaf nodes are values df-con
managementfiort. Securing the TKMA is much easier tion predicates either string or numerical. In the treecitme,
since a very limited amount of data needs to be protected string comparison is represented by a single leaf node.- How
and the TKMA can be keptfiine most of the time. ever, the tree structure uses thag of bitsrepresentation to
support comparisons between numerical values that could ex
It should be clarified that in our settings an Admin User ispress time, date, location, age, or any numerical identifier
not interested in protecting the confidentiality of polefeom instance, let us consider a contextual condition statiag)ttie
other Admin Users and Requesters. Here, the main goal is tBequester location should Bardiologyward and that the ac-
preserve the confidentiality of data and policies from the SP cess time should be between 9:00 and 17:00 hrs. Higure 4 illus

5

R extends ({R,Rj,....Rq}) a role hierarchy graph. In Figuké 5, each line representsea ro
R. extends ({R,Ri.....Rq,}) that may extend a set of roles. All these inheritance ruleg ma
: form a role hierarchy graph. For instance, consider an el@mp
R extends (R.Ri....Rql from healthcare domain whereCardiologist Assistanéxtends
Intern, a Doctor extendsintern and finally aCardiologistex-
Figure 5: RBAC Policy: Role hierarchy tends bothCardiologist AssistanandDoctor. If we combine
all these inheritance rules then it can form a graph as shown i
Cardiologist FigureB.
In this representation, leaf-nodes@ONDITION, R, A, T
of both ACT andREQ roles in the role hierarchy graph, and
attributes in contextual information are in cleartext. ffere,
such information is easily accessible in the outsourced- env

Doctor _ | o
ronment and may leak information about the data that palicie
o _ protect. In the following, we show how we protect such rep-
Cardiologist Assistant resentation while allowing the PDP to evaluate policiesraia
\\ requests and contextual information.
Intern 5. Solution Details

ESPOONRsac aims at enforcing policies in outsourced en-
vironments. The main idea of our approach is to use an
encryption scheme for preserving confidentiality of p@ti

trates the tree structure representing this contextuaditon, ~ While allowing the PDP to perform the correct evaluation. In

where access time (AT) is in a 5-hit representation (#5). ESPOONRgeac We can notice that the operation performed by
A Requester can make a role activation requedT or an the PDP for eval'uating pplicigs (Qgginst attributes in éqyest

access requeREQ In ACT = (i, R), a Requester includes her and conte_xtual information) is §|mllar_t0 the search operat

identity i along with roleR to be activated. After a Requester €x€cuted in a database. In particular, in our case the psliay

is active inR, she can execute permissions assigned.tgor ~ duery; while, attributes in the reque¢T or REQ and con-

executing any permission, a Requester seRE€ = (R A, T) textual information represent the data. .

that includesR she is active in, actioA to be taken over target FOrESPOONRreac as a starting point we consider the mul-

T. A Requester sendsCT or REQrequests to the PEP. tiuser Searchable Data Encryption (SDE) scheme proposed by

The PEP receives and forwards requedBT or REQ Dongetal.in [IE].The SDE scheme allows an untrusted server

to the PDP. The PDP fetches policies corresponding to rel® perform searches over encrypted data without reveaiitiget

quests from the Policy Store. The PDP may require consServer information on both the data and elements used irethe r

textual information in order to evaluate contextual coindis ~ JUESt- The advantage of this method is thatfiéxs muilti-user

to grantACT or REQ Let us consideCONDITION illus- ~ 2CCess without requiring key sharing between users. Eaah us
trated in Figurel¥ requiring location of Requester and aci” e Systém has a unique set of keys. The data encrypted by
cess time. We assume the Requester makes the request wifi}f US€r can be decrypted by any other authorised user. How-
she is inCardiologyward and access time (AT) is 10:00 hrs. €V€": the SDE implementation i {13] is only able to perform
The PIP collects and then transforms this contextual ingorm K€YWord comparison based on equalities. One of the major

tion as follows: Location= Cardiologyward, AT : 0 « = extensions of our implementation is that we are able to sup-
N . AT.' e 0% % AT % % %1% ' ' ’ port the evaluation of contextual conditions containingiptex

Sboolean expressions such as non-conjunctive and rangesjuer

Figure 6: Role hierarchy graph

AT : =%+ 0, where AT is in a 5-bit representation (same as, X .
it is in CONDITION). After performing transformation, the in multi-user Sett'”gs; ,
PIP sends contextual information to the PDP. The PDP re- N 9eneral, we distinguish four phasesBSPOOMreac for
ceives contextual information and then evalu@@NDITION ~ Managing life cycle of policies in outsourced environments
by first matching attributes in contextual information agai | "ese phases includeitialisation, policy deployment, policy
leaf-nodes in theCONDITION tree and then evaluating inter- evalu_anon anduser revocation In the following, we provide
nal nodes according to AND and OR gates. details of each phase.

TheESPOOMRggacarchitecture supports role inheritance. In
role inheritance, a derived role can execute all permisdiam
its base role. Before denyirREQ the PDP may need to check In ESPOONRgac €ach user (including an Admin User and a
if base role of one IREQcan execute requested permissions.Requester) obtains a client side key from the TKMA while the
In order to find base roles, we store arole hierarchy graph@nt SP (as a proxy server) receives a server side key set conespo
SP. INESPOONRsac the PDP traverses in the role hierarchy ing to the user. The client side key set serves as a private key
graph to find base roles. Figdrk 5 illustrates how we repteserior a user. The SP stores all key sets in the Key Store. The Key

6

5.1. Initialisation Phase

Store is accessible to the Administration Point, the PERtfaad the PDP evaluates the contextual condition by matching trap

PDP. doors of contextual information against encrypted leafasod
of the tree representing the contextual condition (as shiown
5.2. Policy Deployment Phase Figure[4). After evaluating leaf nodes, the PDP evaluates no

. . - - . leaf nodes of the tree based on AND, OR and threshold gates.
For deploying (or updating existing) policies, an Admin Use .

: : . : : The PDP grants the access request if (the root node of) the tre
performs a first round of encryption using her client side keyevaluates tarue
set. An Admin User encrypts elements of policies. In role as- The PDP may need to find base roles corresponding to the

signment policies, _an.Admln_User encrypt; all roles a;sjgnerole in REQconsidering the fact that a derived role has all per-
to a user. In permission assignment policies, an Admin User_. . . ;
issions from its base role. In order to find base role, the PDP

encrypts both action and target parts of each permission arEitches the role hierarchy graph from the Policy Store. TbE P
also encrypts the role to which these permissions are assign '

As we know that a tree represents condition conditions df bot matches trapdoor of role REQagainst server encrypted roles

. L . s in the role hierarchy graph. While deploying the role hierar-
role assignment and permission assignment policies (agnsho
o . chy graph, we store also server generated trapdoor of tke rol
in Figure[4), an Admin User encrypts each leaf node of the .

. . . along with each server encrypted of role because the PDRneed
tree while non-leaf (internal) nodes representing AND, OR o . .

) . a trapdoor of each base role so that it can match this trapdoor

threshold gates are in cleartext. In a role hierarchy gragh (

- . . against roles in the Permission Repository. After traversn
shown in Figuré), an Admin User encrypts each of its nod ;
representing a role. After completing the first round of gper e[he role hierarchy graph, the PDP extracts server gendrafed

tion on policies, an Admin User sends client encrypted pasic _doors of all base roles_o_f one that matches with trapdoorlef ro
to the Administration Point on the SP. These client enciypte m_REQ Tﬂe P?ﬁ vsgges i zimt/hbase rolet has requested per-
policies are protected but cannot be enforced as these tire no missions. 1 so, the grants the request.

common format. To _co_nvert_ chent_encrypted policies to COM-z , ser Revocation Phase
mon format, the Administration Point performs a second doun

of encryption using server side key set corresponding téthe In ESPOOMRrgac Users do not share any keys and a com-
min User. The second round of encryption serves as a proxgromised user can be revoked without requiring re-encoyppti
re-encryption. In the second round of encryption, the Adsain Of policies or re-distribution of keys. For revoking a comypr
tration Point encrypts all elements that are encryptederfitst ~ Mised user, the Administration Point removes the serves sid
round of encryption. Finally, the Administration Pointge Key set (corresponding to the user) from the Key Store.

server encrypted policies in the Policy Store.

Algorithm 1 Init

Input: A security parameterl
Output: The public parametensaramand the master secret kaysk

5.3. Policy Evaluation Phase

A Requester can make a role activation reqUesT. Before 1. Generate primes p and q of siZestich thag | p— 1
sendingACT to the SP, a Requester generates a client trapdoof: Create a generatgrsuch thati s the unique ordey subgroup ofZ;,
of the role inACT. A Requester generates client trapdoor us- ;. Erf(;sxearandome %
ing her client side key set. The trapdoor representatiors doe5: Choose a collision-resistant hash functin
not leak information on elements of requests. Similarlyea R 5 oo e o neten
quester can make an access reqR&SDafter getting active ina 8: parame (G,g,q.hH, f)
role. A Requester generates a client trapdoor for each eleme.};, "k O S ammsh
in REQincluding the role, the action and the target. A Re-
quester sends requests containing client generated teptin
the PEP on the SP. The PEP performs another round of trapdoor
generation for converting all trapdoors into a common fdrma 6. Algorithmic Details
After performing a second round of trapdoor generation @n th
server side, the PEP forwards server generated trapdotiie to [N this section, we provide details of algorithms used irheac
PDP. The PDP fetches policies from the Policy Store and theRhase for managing life cycle of policies. All these alduris
performs encrypted matching of trapdoors in request again§onstitute the proposed schema.
encrypted elements in policies. The encrypted matchingiin o
sourced environments does not leak information about eiesme 6-1. Initialisation Phase
of requests or policies. In this phase, the system is initialised and then the

The PDP may require contextual information in order to eval-TKMA generates required keying material for entities in
uate the contextual conditions of policies. The PIP callecn- ESPOOMggac During the system initlisation, the TKMA
textual information and generates client trapdoors fomelets takes a security parametieand outputs the public parameters
of contextual information using her client side key set. Pie ~ paramsand the master key setskby runninglnit illustrated
sends client generated trapdoors of contextual informatio in Algorithm[D. The detail ofinit is as follows: the TKMA
the PDP. The PDP performs another round of trapdoor genergenerates two prime numbepsandq of sizek such that di-
tion using server side key set corresponding to the PIPIlfzina videsp — 1 (Line[d). Then, it creates a cyclic gro@pwith a

7

Service Provider
Administration KSA KSR N ——
Point W
N
Ke, = (AXy)
|<sR = (R‘l XRZ)
Ks, = (P %s,)
Truste
K, =(Xu,S _
Ha (X, 9) K., = (Xp1,9)
KuR = (XR:L'S)
| Admin User | | Requester |

Figure 7: Key distribution

generatog such thatG is the unique ordeq subgroup ofZ;
(Line[2). Next, it randomly choosese Z (Line[3) and com-

puteh asg® (Line[). Next, it chooses a collision-resistant hash

function H (Line[B), a pseudorandom functidn(Line[@) and
a random keys for f (Line[d). Finally, it publicises the pub-
lic parametergparams= (G, g,q, h, H, f) (Line[8) and keeps
securely the master secret kaygk= (X,) (Line[d).

Algorithm 2 KeyGen

Input: The master secret kewsk the user identity and the public parameteparams
Output: The client side key séf,; and server side key sk .

. Choose arandom; € Zy
T Xip ¢ X— Xi1

. Kui «— (_xll»s)

DKy (i, %i2)

sretun (Ky, Kg)

ABWN P

For each user (including an Admin User and a Requester),
the TKMA generates the keying material. For generating the%i

keying material, the TKMA takes the master secret kegk
the user identity and the public parametegaramsand out-
puts two key sets: the client side key 8gt and the server side
key setKs by runningKeyGen illustrated in Algorithn2. In
KeyGen, TKMA randomly chooses;; € Zg (Line[) and com-
putesx, = X — X1 (Line[2). It creates the client side key set
Ky = (X1, 9) (Line[3) and the server side key 9€§ = (i, Xi2)
(Line[d).

After running Algorithn[2, the TKMA sends the client side
key setK,, and the server side key skt to useri and the
Administration Point on the SP, respectively. The cliewlesi
key setK,, serves as a private key for ugerThe Administra-
tion Point of the SP insert&s in the Key Store by updating
it as follows: KS = KS U Kg. The Key Store is initialised
as: KS « ¢. Figure[T illustrates key distribution where Ad-
min UserA, RequesteR and PIPP receiveK,,, K, andKy,,

respectively. The TKMA sends the corresponding server sidand then computes , ¢, andc; asg'*7¢ (Line[3),

key setKs,, Kg, andKs, to the Administration Point on the SP.
The Administration Point inserts server side key sets ihto t

. Service
O 0 |
de) Dc(policy) Provider
Policy
Store
4
ae)

Administration

KS
w - —>| ServerReEnc | Point
/
ca(e)
K., ClientEnc AS:;"
Oel policy

Figure 8: Policy deployment phase

PDP and the PEP are authorised to access the Key Store.

Algorithm 3 ClientEnc

Input: Elementg, the client side key sé€,; corresponding to Admin Uséand the public
parameterparams
Output: The client encrypted elemeqt(e).

. Choose arandom. € Z
D oe — fs(€)

él — gre+rre

a a1

G« €

1 & « H(h'e)

. c,*(e) — (61,62,63)

. return ¢ (€)

NOUAWN R

Algorithm 4 ServerReEnc

Input: The client encrypted element(e) and the server side key st corresponding
to Admin Useri.
Output: The server encrypted elemeate).

C — (él)x'z-éz — é:il“(iz — (gfeﬂTe)X — petoe
=08 = H(hfe)

c(€) = (c1. c2)

return c(€)

3:
4.

6.2. Policy Deployment Phase

In the policy deployment phase, an Admin User defines and
deploys policies. In general, a policy can be deployed aker
forming two rounds of encryptions. An Admin User performs
a first round of encryption while the Administration Point on
the SP performs a second round of encryption. For perform-
ing a first round of encryption, an Admin User ru@ientEnc
illustrated in Algorithm38. ClientEnc takes as input (policy)
elemente, the client side key sef,, corresponding to Admin
Useri and the public parameteparamsand outputs the client
encrypted element’(€). In ClientEnc, an Admin User ran-
domly chooses. € Zj, (Line[l), computese as fs(€) (Line[2),
¢* (Line[)
andH(h') (Line[S), respectivelycy, €, andc; constitutec’ (€)
(Line[8). An Admin User transmits to the Administration Poin

Key Store. Please note that only the Administration Poh, t the client encrypted elements of a policy as shown in Figlire 8

8

The Administration Point retrieves the server side key sefLine[). It creates and initialises new list (Line[2). For
corresponding to the Admin User and performs a second rouneach role inLc, (Line[3), it generates server encrypted role by

of encryption by runnin@erverReEncillustrated in Algorithm

calling ServerReEncillustrated in Algorithm[% (Lind¥4) and

[4. ServerReEnctakes as input the client encrypted elementupdated_s by adding the server encrypted role (LIde 5).

c'(e) and the server side key skt corresponding to Admin
Useri and outputs the server encrypted elen>. The Ad-
ministration Point calculates; andc, as €1)*2.6; = &*7% =
(g'etoe)* = hfet?e (Line[D) andcz = H(h') (Line[2), respec-
tively. Bothc; andc, form c(e) (Line[3). The Administration
Point stores the server encrypted policies in the Policyesis
shown in Figuré.

In the following, we describe how to deployfiirent (parts
of) policies including role assignment, permission assignt,
contextual conditions and role hierarchy graph. For théayep
ment of each (part of) policy, we follow general strategy las a
ready described in this section and also illustrated in feigu

Algorithm 5 RoleAssignment:ClientSide

Input: List of rolesL to be assigned to Requesiethe client side key sét,, correspond-
ing to Admin Useiri and the public parameteparams
Output: The client encrypted role assignment ligj .

Lilg «¢

2: for each roler in list L do

3: ¢/ (r) « call ClientEnc (r, Ky, paramg {see Algorithni 3
: Lg; « Lo uc(n)

5: end for

6: return (j, Lc;)

Algorithm 6 RoleAssignment:ServerSide

Input: The client encrypted role assignment lisi; for Requesterj and identityi of
Admin User.
Output: The server encrypted role assignment list

: Kg « KSJ[i] {retrieve the server side key corresponding to Admin Wser
Ls « ¢

: for each client encrypted rolg(r) in list L¢; do

c(r) « call ServerReEnc(c/(r), Ky) {see Algorithni}

Ls « Lsuc(r)

: end for

T return (j, Ls)

Deployment of Role Assignment Policies. In order to assign

Algorithm 7 PermissionAssignment:ClientSide

Input: List of permissiond. to be assigned to rolg the client side key sey; corre-
sponding to Admin Userrand the public parameteparams

Output: The client encrypted permission assignmentlligtassigned to the client gener-
ated rolec'(r).

: ¢(r) « call ClienteEnc (r, Ky, paramg

LCi — ¢

: for each permissioragtion targef) in L do

¢; (action) « call ClientEnc (action Ky, param$
c/ (targe « call ClientEnc (target K, , paramg
Lg; « Lg U (¢ (action), ¢ (targed)

. end for

s return (¢'(r), Lg;)

Algorithm 8 PermissionAssignment:ServerSide

Input: The client encrypted permission assignmentlligtfor client generated role'(r)
and identityi of Admin User.
Output: The server encrypted permission assignmentisand the server generated role

c(r).

Ky « KSJi] {retrieve the server side key corresponding to Admin Wser
: (r) « call ServerReEnc(c/ (r), Kg)

Ls « ¢

. for each client encrypted permissiagi (action), ¢f (targed) in list L¢; do
c(action) « call ServerReEnc(c; (action), Kg)

c(targef) « call ServerReEnc(c; (targed, K)

Ls « Ls U (c(action), c(targe?)

. end for

T return (c(r), Ls)

©COND U AWNE

Deployment of Permission Assignment Policies: An Admin
User can assign permissions to a role. In order to deploy poli
cies regarding permissions assignment to roles, an Admaén Us
runs Algorithn{T. This algorithm takes as input a list of pexm
sionsL to be assigned to role the client side key sé€,, cor-
responding to Admin Usdrand the public parameteparams
and outputs the client encrypted permission assignmentdis
assigned to client generated rajgr). First, it generates client
encrypted rolec’(r) by calling ClientEnc illustrated in Algo-

roles to a Requester, an Admin User can deploy role assignmerithm [3 (Line[1). Next, it creates and initialises new list

policies. For this purpose, an Admin User rurReleAssign-
ment:ClientSide illustrated in Algorithmb. This algorithm
takes as input a list of rolels to be assigned to Requestgr
the client side key se,, corresponding to Admin Useérand
the public parametensaramsand outputs the client encrypted
role assignment listc,. First, it creates and then initialises
new list L, (Line[D). For each role ik (Line [2), it gener-
ates client encrypted role by callinglientEnc illustrated in
Algorithm[3 (Line[3) and then it updatds:, by adding client

(Line[2). For each permission ib (Line[3), it generates the
client encrypted actiow; (action) (Line [4) and the client en-
crypted target; (targef) (Line[3) and updatekc, by adding the
client encrypted permission (Lifi¢ 6). An Admin User sends th
client encrypted permission list along with the client empted
role to the Administration Point. The Administration Painhs
another round of encryption by running Algoritiiin 8. Thisalg
rithm takes as input the client encrypted permission assagr
list Lc, for client generated role’(r) and identityi of Admin

encrypted role (Lin€l4). An Admin User sends the client en-User and outputs the server encrypted permission assignmen

crypted role assignment list to the Administration Pointring
the second round of encryption, the Administration Poimisru
RoleAssignment:ServerSidéllustrated in Algorithni®. This

list Ls and the server generated rale). First, it retrieves from
the Key Store the server side key $&t corresponding to Ad-
min Useri (Line[). Next, it generates the server encrypted role

algorithm takes as input the client encrypted role assignnime by calling ServerReEncillustrated in Algorithm[# (Line R).

list Lc, for Requestej and identityi of Admin User and ouputs
the server encrypted role assignment list While running
RoleAssignment:ServerSidethe Administration Point first re-
trieves the server side kdys corresponding to Admin User

9

Then, it creates and initialises new lis¢ (Line[3). For each

client encrypted role ihc, (Line[), it generates the server en-
crypted action (Linél5) and the server encrypted targetg(Lin
[6) and updatets by adding the server encryption permission

(Line[@).

Algorithm 9 ContextualConditionDeployment:ClientSide

Input: The contextual conditiofT, the client side key seK; corresponding to Admin
Useri and the public parameteparams
Output: The client encrypted contextual conditide, .

1: TCi «T

2: for each leaf nodein Tc; do

3. c/(e) « callClientEnc (r, Ky, paramg
4: replacee of Tc; with ¢ (€)

5: end for

6: return Tc;

Algorithm 10 ContextualConditionDeployment:ServerSide

Input: The client encrypted contextual conditidg; and identity of Admin User.
Output: The server encrypted contextual conditibs

© Kg « KSJ[i] {retrieve the server side key corresponding to Admin Wser
1 Ts « Tg

. for each client encrypted leaf nodg€) in Ts do

c(e) « call ServerReEnc(c(e), Ks)

replacec; (€) of Ts with c(e)

. end for

D return Tg

Deployment of Contextual Conditions: The contextual con-
dition (part of role assignment and permission assignmelitt p
cies) can be deployed in two steps. In the first step,
User performs a first round of encryption by running Algarith
[@. This algorithm takes as input the contextual condifign
the client side key sdt,, corresponding to Admin Userand
the public parametensaramsand outputs the client encrypted
contextual conditionl,. First, it copiesT to T¢, (Line [T).
For each leaf node ific, (Line[2), it generates the client en-
crypted element by callin@lientEnc illustrated in Algorithm
3 (Line[3) and then updatdg; by replacing elemergwith the
client encrypted elemenf () (Line[d). An Admin User sends
the client encrypted contextual condition to the Admirgson
Point. In the second step, the Administration Point perfrm
another round of encryption by running Algoritim] 10. This
algorithm takes as input the client encrypted contextuatico
tion T¢, and identity of Admin User and outputs the server
encrypted contextual conditioRs. First, it retrieves from the
Key Store the server side ké§g corresponding to Admin User
i (Line[D). Next, it copiesTc, to Ts (Line[2). For each each
client encrypted leaf node if (Line[3), it generates the server
encrypted element by callirgerverReEncillustrated in Algo-
rithm[4 (Line[d). Then, it replaces the client encrypted etam
c;(e) of Ts with the server encrypted elemeate) (Line[S).

Algorithm 11 RoleHierarchyDeployment:ClientSide

Input: The role hierarchy grapf®, the client side key sef; corresponding to Admin
Useri and the public parameteparams
Output: The client generated role hierarchy gre@d .

1 Gg <G

: for each node in G¢; do
¢ (r) « call ClientEnc (r, Ky, , paramg
td; (r) < call ClientTD (r, K, , param$ {see Algorithn{IB
replacer of Gg; with (c'(r), td;'(r))

end for

return Gg;

Noghkwne

10

Algorithm 12 RoleHierarchyDeployment:ServerSide

Input: The client generated role hierarchy grap and identity of Admin User.
Output: The server generated role hierarchy gr&gh

Ky « KSJi] {retrieve the server side key corresponding to Admin Wser
I Gsg « GCI

. for each client generated nodg (f), td'(r)) in Gs do

c(r) « call ServerReEnc(c(r), Kg)

td(r) < call ServerTD (td; (r), Ks) {see Algorithn[T}

replace € (r), td; (r)) of Gs with (c(r), td(r))

. end for

:return Gs

Deployment of Role Hierarchy Graph: We know that a de-
rived role inherits all permissions from its base role. Ise#
requested permissions are not assigned to the Requester’s r
the PDP may need to traverse in the role hierarchy graph to
find base roles corresponding to the Requester’s role amd the
PDP verifies if any base role can fulfil requested permissions
For this purpose, the PDP needs a trapdoor of each base role so
that it can match this trapdoor against roles in the Perprissi
Repository. Therefore, a role hierarchy graph stores araje
door along with each encrypted role. The deployment of role
hierarchy graph takes place in two steps. In the first step, an
Admin User runs Algorithni 1. This algorithm takes as input
the role hierarchy grapls, the client side key sek,, corre-

an Admigonding to Admin User and the public parametearams

and outputs the client generated role hierarchy gaghFirst,

it copiesG to Gg, (Line[d). For each nodein G¢, (Linel2), it
generates the client encrypted role by call@igentEnc illus-
trated in AlgorithnB (LinéB) and the client trapdoor by ozl
ClientTD (Line[) illustrated in Algorithni I3 that is explained
later in this section. Next, it replacesof G¢, with the client
encrypted role and the client generated trapdoor (CIne 5). A
Admin User sends the client generated role hierarchy graph t
the Administration Point. In the second step, the Admiaistr
tion Poaint runs Algorithni12. This algorithm takes as input
the client generated role hierarchy gra@h, and identity of
Admin Useri and outputs the server generated role hierarchy
graphGs. First, it retrieves from the Key Store the server side
key Kg corresponding to Admin UsexLine[d). Next, it copies
Gg, to Gs (Line[2). For each client generated node (Life 3),
it generates the server encrypted role by calBggverReEnc
illustrated in Algorithm% (Lind¥) and the server trapdogr b
calling ServerTD (Line) illustrated in Algorithn_I¥ that is
explained later in this section and then upd#&@esy replacing
the client generated node with the server generated node (Li

).

Algorithm 13 ClientTD

Input: Elemente, the client side key sé€,; corresponding to uséand the public param-
etersparams
Output: The client generated trapdotat (€).

. Choose arandom, € Z

Lo — fs(€)

It « gegre

th « h’eg’xilfeg)‘il”e = gxizfegxilffe
L tdf(e) « (t1.12)

. return td:(e)

OUAWN P

Algorithm 14 ServerTD Algorithm 15 Match

Input: The client generated trapdotat'(€) and the server side key d€§ corresponding Input: The server encrypted elemet(e) = (ci, c;) and the server generated trapdoor
to useri. td(e) =T.
Output: The server generated trapddde(e). Output: trueor false
%; td(e) — tji2.t, = ge 1: if ¢ 2 H(c.T) then
- return td(e) 2. return true
3: else
4: return false
- - 5: end if
Ode) Oc(policy) Service Provider
_ PDP
i de) = (c,c,) . . .
‘ ::::Z l ’ input the client generated trapddd (e) and the server side key
setKg corresponding to usérand outputs the server generated
X g :
PEP| trapdoortd(e). It calculatesd(e) ast;.t, = g*’¢ (Line[T]). . .
[[servertp } 9‘;‘;7’5 g’ In order to match a server encrypted element of a policy with
a server generated trapdoor of a request, the PDPMartch
illustrated in Algorithm[Ib. Match takes as input the server
K LK encrypted elemert(e) = (c;, ¢;) and the server generated trap-

doortd(e) = T and returns eithetrue or false It checks the
conditionc, a H(c;.T™Y) (Line[d). If the condition holds, it re-

td2,(e) td> (e) turnstrue (Line[2) indicating that the match is successful. Oth-
erwise, it returngalse(Line[d).
K,—>[Clienttp | Reauester| | eiienttp Je— K, PP In the following, we describe how to evaluate (parts of) poli
cies including role assignment, permission assignmenteze
Del request Uel attributes tual conditions and role hierarchy graph. For the evalmatib
each (part of) policy, we follow general strategy as alredely
Figure 9: Policy evaluation phase scribed in this section and also illustrated in Figure 9.

Algorithm 16 SearchRole

Input: The client generated trapdoor of rdlé (r) and the server encrypted role assign-
. . . ment list (or list of active roles in sessioby for Requester
The policy evaluation phase is executed when a Requestextput: trueorfalse

makes a request eith&CT or REQ In this phase, a Requester 1. Ks « KSIi (retrieve the server side key corresponding to Requéister
sends client generated trapdoors (using Algorifhin 13) @f-a r 2: td(r) — call ServerTD (td'(r), Ks)
; 3: for each server encrypted raté) in Ls do

quest to the PEP. The PEP converts client generated tra®dO0s: matche call Match (c(r), td(r)) {see AlgorithniTh
into server generated trapdoors (using Algorifhh 14) andse 5: if matchZ truethen
them to the PDP. The PDP matches server encrypted trapdoo% endr?ft“m true
of the request with server encrypted elements of the polisy (8: end for
ing Algorithm[IB). Optionally, the PDP may require contex- % retum faise
tual information in order to evaluate contextual condisiomhe
PIP sends client generated trapdoors of contextual infooma Searching a Role: A Requester can make a role activation
to the PDP. The PDP converts client generated trapdoors int@questACT and sends it to the SP. In order to gré&@T, the
server generated trapdoors and then evaluates contegiditc ~ SP runsSearchRoleillustrated in AlgorithniIB. This algorithm
tions based on contextual information. Finally, the PDRmet takes as input the client generated trapdoor oftdji¢r) and the
eithertrue or falseas shown in Figurgl9. In the following, we server encrypted role assignment Listfor Requester. First, it
describe how we generate trapdoors and perform the match. retrieves from the Key Store the server side Kgycorrespond-

For calculating client generated trapdoors of a requesing to Requesteir(Line[dl). Next, it calculates the server gener-
(or contextual information), a Requester (or the PIP) runsated trapdootd(r) by calling Algorithm[I4 (LindR). For each
ClientTD illustrated in AlgorithmiIB.ClientTD takes as in- server encrypted role(r) in Ls (Line[3), it performs matching
put each elemerg of the request, the client side key 3€f againsttd(r) by calling Algorithm[I5 (Lind#). If any match is
corresponding to usérand the public parametemaramsand successful (Lin€l5), it returrtsue (Line[8), meaning thaACT
outputs the client generated trapdddf(e). First, it choose is granted. Otherwise, it returfisise(Line[9).
randomlyre € Z; (Line[D). Next, it calculatesre as fs(€) After ACT is granted, the PEP updates Session by adding
(Line[@). Then it calculates, andt, asg g’ (Line[d) and in the Active Roles repository the server generated trapdbo
hfegXilegXi0e = g¥izfegae (Line[4), respectively. Botlty and role. Once a Requester is active in a role, she can make an
t, formtd’(e) (Line[H). A Requester sends client generated trapaccess requeREQ Before grantindiREQ the SP checks if the
doors of the request to the PEP. The PEP receives client-gendRequester is already in the role REQ For this purpose, the
ated trapdoors and rurerverTD illustrated in AlgorithnI# SP runs Algorithni 116, wherks shows a list of active roles in
for calculating server generated trapdodB&rverTD takes as the session. Furthermore, the PDP also runs Algorithin 16 for

11

6.3. Policy Evaluation Phase

searching the role iREQin the Permission Repository with a
slight modification of ignoring the server trapdoor genierat
(in Line[2) as it is already generated when the roldR&Qis
searched in the session.

Algorithm 17 SearchPermission

Input: The client generated trapdoor of permissitai (actior), td; (targef) and the server
encrypted permission assignment ligtfor Requester
Output: trueor false

1: Kg « KJi] {retrieve the server side key corresponding to Requéster
2: td(action) « call ServerTD (td’ (actior), Kg)

3: td(targe)) « call ServerTD (td; (targe), Kg)

4: for each server encrypted permissiatagtion), c(targed) in Ls do
matchyiion < call Match (c(action), td(action))

matchgrget < call Match (c(targed), td(target)

if matchytion 2 true andmatcharget 2 truethen
return true

end if

10: end for

11: return false

Searching a Permission: A Requester can serREQfor ex-

ecuting certain permissions. The PEP on the SP checks if the

Requester is active in the role indicatedREQ and then the

calling Algorithm[I3 (Line[B) and addsl’(e) in L¢, (Line[).

Algorithm 19 EvaluateTree

Input: Noden and treeT.
Output: true or false

=

if n.decision# null then

return n.decision
T endif
: for each childc of nin treeT do
call EvaluateTree(c, T) {recursive call
1 end for
t<0
m«0
for each childc of nin treeT do

te—t+1

if c.decisionZ truethen

mem+1

end if
. end for
Lif (n.gatet7 ANDandm Z t) or (n.gateg ORandm > 1) then
n.decision« true
: else

n.decision« false
end if
return n.decision

19:
20:

Evaluating Contextual Conditions: For evaluating any con-

searches that role in the Permission Repository by running A textual condition, the PDP rur@ontextualConditionEvalu-
gorithm[1B. After a role is matched in the Permission Reposation illustrated in Algorithm{ZD. This algorithm takes as in-

itory, the PEP searches the permissioiREBQby running Al-
gorithm[I7. This algorithm takes as input the client gerestat
trapdoor of permissiontd’(action), td’(target) and the server
encrypted permission assignment listfor Requesterand re-
turns eithettrue or false First, it retrieves from the Key Store
from the Key Store the server side kidy corresponding to Re-

put the client generated list of trapdoors of contextuaitattes
Lc,, the server encrypted contextual conditibg and identity
of Requester and returns eitherue or false First, it retrieves
from the Key Store the server side ki€y corresponding to Re-
questeii (Line[). Next, it creates and initialises a new list
(Line[2). For each client generated trapdtdi(e) in Lc, (Line

questei (Line[l). Next, it calculates server generated trapdoorg) it calculates the server generated trapdd(e) by calling

of both action (Lin€R) and target (Lifi¢ 3) by calling Algdin
[I4. For each server encrypted permissic@agtion), c(target)

Algorithm [14 (Line[3) and addg&d(e) in Ls (Line[H). Next,
it copiesTs to TREE(Line[7) and adds decision field to each

in Ls (Line[d), it matches the server encrypted action with thengge iNTREE(Line[). For each node in TREE(Line[d), it

server generated action (Libk 5) and the server encryptgeitta
with the server generated taret (L[de 6), respectively,dlng

initialises n.decisionas null (Line[I0). For each leaf node
in TREE (Line[I2), it checks if any server generated trapdoor

Algorithm[I8. If both matches are successful (Lie 7) for anytd(e) in Ls (Line[I3) matches with it by calling Algorithfi 15

permission ¢(action), c(targe) in Ls, it returnstrue (Line[8).
Otherwise, it returnfalse(Line[17).

Algorithm 18 ContextualConditionRequest

Input: List of attributes contextual attributés the client side key sé€,; corresponding
to Requesterand the public parametepgrams
Output: The client generated list of trapdoors of contextual attribltes

Lci — ¢

: for each attributein L do

td’(e) « call ClientTD (r, Ky, param$
Le; « Lo Utd(e)

. end for

return Tg

Generating Contextual Attributes. The PIP runsContex-
tualAttributesRequest illustrated in Algorithn{I8 to calculate
client generated trapdoors of contextual informatiQuntex-
tualAttributesRequest takes as input a list of contextual at-
tributesL, the client side key sé¢,, corresponding to Requester
i and the public parameteparamsand outputs the client gen-
erated list of trapdoors of contextual attributes. First, it cre-
ates and initialises new lisi;, (Line[). For each attributein
L (Line[2), it calculates the client generated trapdutite) by

12

(Line[I3d). Next, it evaluates non-leaf nodesT®REEby run-
ning Algorithm[I9 (LindZ2D). Finally, it returns eithérue or
falsedepending upon the evaluation BREE(Line[21).

EvaluateTree evaluates a tree containing AND and OR
gates. It takes as input root nodeand treeT and returns ei-
thertrue or false First, it checks if the decision faris already
made (Lind]l). If so, it returns the decision (Lide 2). Forleac
child cof nin treeT (Line[d), it recursively call€valuate Tree
(Line[B). Next, it creates and initialiseégLine[d) andm (Line
[) indicating total children of and a count of matched chil-
dren, respectively. For each chitdof nin treeT (Line[@), it
counts total children (Line10) and matched children by &hec
ing made decisions (Life1L2). Next, it checks if non-leafeod
is AND and all children are matched or non-leaf node is OR
and at least one child is matched (Ling 15). If so, it is set as
true (Line[I8) andfalse(Line[I8) otherwise.

Searching Roles in Role Hierarchy Graph: The PDP may
need to search base roles of oneRBQ since a derived role
inherits all permissions from its base role. The PDP runs
SearchRoleHierarchyGraph illustrated in Algorithm[Z1L to
find base roles from the encrypted role hierarchy graph. This

Algorithm 20 ContextualConditionEvaluation

Input: The client generated list of trapdoors of contextual attribligs the server en-
crypted contextual conditiohs and identity of Requesteér
Output: true or false

: Eﬁ ed)KS[i] {retrieve the server side key corresponding to Requéster
S

. for each client generated trapdddy (€) in L¢; do

td(e) « call ServerTD (td;(e), Ks)

Ls « Ls Utd(e)

. end for

I TREE«Ts

: Add decision field to each node TREE

: for each node in TREEdo

n.decision— null

> end for

12: for each leaf node in TREEdo

13: for each server generated trapdtu(e) in Ls do

e
Roe@NouRwNE

14: n.decision« call Match (n.c(e), td(e))
15: if n.decisionZ true then

16: return break

17: end if

18: end for

19: end for

20: call EvaluateTree (T REEroot, TREE {see Algorithni_Ip
21: return TREEroot.decision

Algorithm 21 SearchRoleHierarchyGraph

Input: The server generated trapdoor of ralér) and the server generated role hierarchy

graphGs
Output: true or false

1: for each server encrypted ratgr) in Gs do
2: match« call Match (c(r), td(r))

3 if match2 true then
4: return true

5 end if

6: end for

7: return false

algorithm takes as input the server generated trapdoorlef ro

td(r) and the server generated role hierarchy gr@glrand re-
turnstrue if any base role is found anfalse otherwise. For
each server encrypted raté) in Gs (Line[d), it checks iftd(r)
matches with ang(r) by calling Algorithm[I5 (Lind®). If any
match is found (Lin€13), it returnsue (Line[). Otherwise, it
returnsfalse(Line[7).

Algorithm 22 UserRevocation

Input: The user identity.
Output: true or false

©if exit{KS[i]) = falsethen
return false

cend if

D Ky « KSIi]

: KS « KS\Ks

. return true

ouhAwWNR

6.4. Revocation Phase

side key seKg corresponding to user(Line[), removeKg
from the Key Store (LinEl5) and returtrsie (Line[d).

7. Security Analysis

In this section, we analyse the security of the policy deploy
ment phase that includes Role Assignment (RA) encryption
(Algorithms[3 andB), Permission Assignment (PA) encryptio
(Algorithms[1 andB), Contextual Condition (CC) encryption
(Algorithms[9 and_1I0), and Role Hierarchy (RH) encryption
(Algorithms[11 and_12). We then analyse the security of the
policy evaluation phase that include Search Role (SR) (Algo
rithms[I3 and’16), Search Permission (Algoritimk 13[and 17),
Contextual Condition Evaluation (Algorithnis]18 and 20) and
Search Role Hierarchy (Algorithrbs]13,]14 21).

We first define some basic concepts on which we build our
security proofs.

7.1. Preliminaries

In general, a scheme is considered secure if no adversary
can break the scheme with probability significantly gretitan
random guessing. The adversary’s advantage in breaking the
scheme should be a negligible function of the security param
ter.

Definition 1 (Negligible Function) A function f is negligible if
for each polynomial) there exists N such that for all integers
n> N it holds that {n) < -

We consider a realistic adversary that is computationally
bounded and show that our scheme is secure against such an
adversary. We model the adversary as a randomised algorithm
that runs in polynomial time and show that the success proba-
bility of any such adversary is negligible. An algorithm ti&
randomised and runs in polynomial time is called a Probsbili
tic Polynomial Time (PPT) algorithm.

Our scheme relies on the existence of a pseudorandom func-
tion f. Intuitively, the output a pseudorandom function cannot
be distinguished by a realistic adversary from that of a/traih-
dom function. Formally, a pseudorandom function is defined
as:

Definition 2 (Pseudorandom Functianf function f: {0, 1}* x
{0, 1}* — {0, 1}* is pseudorandom if for all PPT adversarigs
there exists a negligible function negl such that:

IPr[AK) = 1] - Pr[AT = 1]| < neg(n)

In this phase, the PEP can remove a compromised user frofghere k — {0,1}" is chosen uniformly randomly and F is a

the system. In order to remove a user, the PEP tseRevo-

function chosen uniformly randomly from the set of function

cation illustrated in Algorithn{2R. This algorithm takes as in- mapping n-bit strings to n-bit strings.

put the user identityand returns eithetrue (indicating that the
user has been removed successfully) or false (indicatatgltle

Our proof relies on the assumption that the Decision&i®i

user does not exist in the system). First, it checks if thergiv Hellman (DDH) is hard in a grouf, i.e., it is hard for an ad-

user exists by checking the Key Store. If no, it retufalse

versary to distinguish between group elemeyitsandg” given

(Line[2). Otherwise, it retrieves from the Key Store the serv g* andg’.

13

Definition 3 (DDH Assumption) The DDH problem is hard

regarding a groupG if for all PPT adversariesA, there exists Sucg(k) = }pr[A(C’O) =0] + }pr[A(C’t) =1 (2
a negligible function negl such th®r[A(G, g, 9,9, o, g*) = 2 2

1]-Pr[A(G, q,9,9% o, ¢) = 1]| < neglk) whereG is a cyclic In the following, we show that breaking th®A scheme re-
group of order ((|q| = k) and g is a generator df, anda, 3,y € duces to breaking th€ E game. In theKE game from], the
Zq are uniformly randomly chosen. adversary challenges the game with two keywosgsandw;

. .)) and tries to distinguish between their encryptions. Letars c
Encryption algorithms in policy deployment phase are basedjger a PPT adversarft’ who attempts to challenge the single
on ClientEnc andServerReEncfunctions that is equivalent to keyword encryption schemkE using the correspondinBA

encrypting a single keyword in the SDE scheme [13]. Dong;qyersary# as a sub-routine The game is the following:
et al. [IE] show that the single keyword encryption scheme is

indistinguishable under chosen plaintext attal®Y-CPA). A e A’ is given the parameter€s(q, g, h, H, f) as input and
cryptosystem is considered IND-CPA secure if no PPT adver- for each useris given (, xi2).

sary, given an encryption of a message randomly chosen from
two plaintext messages chosen by the adversary, can iglentif
the message choice with non-negligible probability. Detg o A generates two lists of rolds, andL; having the same

al. [IE] prove the following theorem about the single Keyword number of roleg and gives them to’.
Encryption (KE) scheme:

e A passes these parametersAo

o A’ chooses « [1,1]. It then usegi,r} to challenge the
single keyword encryptiolE game. The adversary gets
backc, as the result, where, is the encryption of either
ry orri. A’ uses this result to construct a hybrid vector
(c3.....chtc.ch ..., c)) and sends it toA.

Theorem 1. If the DDH problem is hard relative tds, then

the single keyword encryption scheme KE is IND-CPA secure
against the server S, i.e., for all PPT adversari@shere exists

a negligible function negl such that:

i1k
(parammsR « Init(1%) e A’ outputsh’, the bit output byA.
(Ku, Ks) « KeyGerimsk U) _ _
, Wo, Wy« FACTentEndku) (K) Ais required to distinguisE® andC-? and the probability
Sucges(k) = Pr|b’ =b b& 10,1 of A’s success in distinguishing correctly is:
¢ (Wp) = ClientEngXi1, W) . 1 N 1 N
b — ﬂCIlentEm{Ku,-)(KS’ C (W) S ucg(k) = E|:>r[A(C(I)) =0]+ E|:>r[A(C(|—1)) =1] ()
< 3 + neglk)
(1) Because is randomly chosen, it holds that:
Proof. See Theorem 1 in [13]. Sucer(k) = X1, S ucg(t) . %
_ _ T _ = ZPIAC) = 0+ 5 (PIIAC) = 0]
7.2. Security of Encryption Algorithms in the Policy Deploy FPIAC) = 1)) + LPIACY = 1]
= : =
ment Phase = 1IPIACY) = 0] + PIACY) = 1]) + &
Using the fact that th& E scheme is IND-CPA secure, we = {_ls ucGy(k) + %
show that the four encryption schemes: RA, PA, CC and RH (4)

are also IND-CPA against the server. We give the proof detail Because the success probability@fto break the single key-
for the Roles Assignment encryption scheRe We will show word encryption scheme Bucgy (k) < % + neglk), it follows
that the following theorem holds: thatS uce(k) < 3 + neglk).

Theorem 2. If the single keyword encryption KE scheme is The proof for the other encryption schemes is similar and for
lack of space we do not show all the details.

IND-CPA secure against the server, then the RA encryption
scheme RA is also IND-CPA, i.e., for all PPT adversaris
there exists a negligible function negl such that Se¢k) <

3 + neglk).

7.3. Security of Algorithms in the Policy Evaluation Phase

We now analyse the security of SR, Search Permission, Con-
textual Condition Evaluation and Search Role Hierarchyesgh

Proof. We prove the theorem by showing that breaking thelgorithms require the SP to take some client input (i.ep-tr
RA encryption reduces to breaking tiE encryption. We doors computed using AlgorithmI1.3), process it (i.e., rergpt
define the following game in which the adversafy chal- it using Algorithm[I4), and test whether it matches somerinfo
lenges the game with two lists of rolég andL; having the mation stored on the server. Though a single operation exs be
same number of roles. We construct the following vec- proved secure, we are interested in what these algorithaks le
tor containing the encryption of roles from both lis€® = to the SP. We follow the concept of non-adaptive indistishai
C(r(l)), .. .,C(r(‘)),C(ril‘fl), ...,C(r}). The success probability of bility security introduced for encrypted databases |By 3 a
the adversary in distinguishing the encryption of the twtslof ~ adapted by [13] in a multi-user setting. We show that givem tw
roles is defined as: non-adaptively generated histories with the same length an

14

outcome, no PPT adversary can distinguish the historiestbas such that:
on what it can observe from the interaction. A history camgai

all the interactions between clients and the SP. Non-adapti
history means that the adversary cannot choose sequences of
client inputs based on previous inputs and matching outsome

In the following, we show the details for the SR scheme. In
this scheme, a history is defined as follows:

(paramsmsR « Init(1¥)
(Ky, Ks) « KeyGerfmsk U)
rlb’ =b %o,%l — A(Ks) < 5 +neglk)
b <— {0, 1}
b" « A(Ks, Vi, (Hib))
(5)
where U is a set of user IDs, Ks the user side key setsg K

Eeflnmon 4S(|§R I-(|j|st(|7ry|) AN Sr? history/; is an mteractnl)n are the server side key sefd;; and Hjp are two histories over
etween a and all clients that connect to it, over i role acy requests such that T#io) = T r(Hia).

tivation requests; = (Lg',...,Lg,ri%, ... r"), where yrep-

resents an identifier of the client making the requesfsidpre- Theorem 3. If the DDH problem in hard relative t&, then the

sents the lists of roles for client,and 1" represents the request SR scheme is a non-adaptive indistinguishable secure gchem

made by the client. The success probability of a PPT adversafyin breaking the
SR scheme is defined as:

We formalise the information leaked to a SP dsage. We Sucd'(K) = %Pr[ﬂ(RA(Ifo),TD(r*o)) - O+

define two kinds of traces: the trace of a single request and ip RALC). TDEY) = 1 ©)
the trace of a history. The trace of a request leaks to the SP 3 MA(If(1), TB(M) = 1]
which role inLy matches the request and can be formally de- < 3 + neglk)

fined as:tr(r) = {td % (role), L., idx}, whereidx is the index of
the matched role, if any, ibl.

We define the role matching pattefhover a history#; to
be a set of binary matrices (one for each client) with columns Proof. We consider an adversafy that challenges the RE
corresponding to encrypted roles in the list of the cliemig a IND-CPA game usingAl as a sub-routineA” does the follow-
rows corresponding to reques®]j, k] = 1 if requestj matched ing:
thek's role andP[j, k] = 0 otherwise. o A’ receives public parametepmramsand the server side

The trace of a history includes the encrypted role assighmen (i x;,) keys.
lists of all clientsLy stored by the SP and which can change
as new roles are added and clients leave of join the system, th ® To generate a view of a historyH — =

where RAL) is the role encryption of the vector of lists of,H
and T O;) is theClientTD of the roles in the requests of H

trace of each request, and the role matching pafefor each (L. L., qf). A performs the following
client. steps:
During an interaction, the adversary cannot see directly th — For each role assignment "ISTj’ run Algorithm 5 to

plaintext of the request, instead it sees the ciphertexa. vidw encrypt it asRALLY)
of arequest is defined as: y I
— For each Search Role requegt, run ClientT D to

Definition 5 (View of a Request) We define the view of a re- generate the trapdodrD(r) for the role.

quest ql under a key set i{as: Vk,(q") = tr(q") o A outputsFHio, Hi. A’ encrypts%l by |tself and chal-

o _ _ _ lenges the RE IND-CPA game with, and Ll, the vec-
Definition 6 (View of a History) We define the view tors of all roles lists in the two histories. It gets the résul

olfula h:_slfioel Wffh : \l;lterauci:tlons Hias Vi, (Hi) RA(Eb) whereb & {0,1} and forms a view of a history
(L5 oo b Vi (), - Vi (67): (RA(Ly), TD(r3)). It sends the view toA.

The security definition is based on the idea that the scheme ¢ A tries to determine which vector was encrypted and out-
is secure if nothing is leaked to the adversary beyond wieat th putsb’ € {0, 1}.
adversary can learn from traces.

i . . . o A outputsb'.
We define the following game in which an adversatyen-

erates two historied; and #;; with the same trace over Because th&Ascheme is IND-CPA, it follows that:
requests. Then the adversary is challenged to distinghish t
views of the two histories. If the adversary succeeds with ne % +neglk) > S ucé‘,;(k)

ligibl bability, th h i . - S
igible probability, the scheme is secure = IPrA(RALL). TD(r))) = O]+ 7)

LPrIA(RALL), TD(F))) = 1
Definition 7 (Non-adaptive indistinguishability against a curi- 2PHIARAL) (fu) =1l

ous SP) The SR scheme is secure in the sense of non-adaptive Now let us consider another adversaif who wants to dis-
indistinguishability against a curious SP if for aleiN and for tinguish the pseudorandom functibrusingA as a sub-routine.
all PPT adversariesA there exists a negligible function negl The adversary does the following:

15

e It generates@, g, g, h, H) as public parameters, and sends8. Performance Analysis
them toA along with f. For each user, it chooses ran-
domly X1, Xi» such thatx; + x> = X. It sends all {; x;») to In this section, we discuss a quantitative analysis of thie pe
A and keeps alli(x1, Xi2). formance ofESPOONRrgac It should be noticed that here we

are concerned about quantifying the overhead introduceldeby

o A outputsHi, Hi1. A” encrypts all the roles lists itfj; ~ encryption operations performed both at the trusted enviro
as RA(Ifo). It chooses R (0,1} and asks the oracle to ment_ and the outsource_d environment. In the fpllowmg dis-
encrypt all roles iy, It combines the results to form a cussion, we do not take into account the latency introduged b

view (RALo), T D()) and returns it taA. the network communication.

e Aoutputsh’. A” outputs 1 ifb’ = b and 0 otherwise. 8.1. Implementation Details

. . We have implementedESPOONRgac in Java 16. We
There are two cases to consider: Case 1: the oracl’® nhave developed all the components of the architecture negjui

game is the pseudorandom functibrthen: for performing the policy deployment and policy evaluation
phases. For the cryptographic operations, we have impleden

PriAa” =014 = 1] = all the functions presented in Sectfdn 6. We have testedihe i

%Pr[ﬂ(RA(Ifo),TD(r*o)) = 0]+ (8) plementation oESPOONRgac ON a single node based on an
%Pr[ﬂ(RA(EO),TD(F’l)) =1] Intel Core2 Duo 2 GHz processor with 2 GB of RAM, run-

ning Microsoft Windows XP Professional version 2002 Sesvic
Case 2: the oracle ifl”’s game is a random functidh then Pack 3.
for each distinct role, o is completely random tcA. More-

over, we know the traces are identical,R&(Ly) andTD(fb) 8.2, Performance Analysis of the Policy Deployment Phase

are completely random t@l. In this case:)))
In this section, we analyse the performance of the policy de-

101k 1 ployment phase. In this phase, an Admin User encrypts poli-
PrlA" (1) = 1] = 2 (9) cies and sends those encrypted policies to the Administrati
Point running in the outsourced environment. The Adminis-
Becausdf is a pseudorandom function, by definition it holds tration Point re-encrypts policies and stores them in tH&yo

that: Store in the outsourced environment. In the following, walan
yse the performance of deploying (part of) policies inchgdi
IPrLA"0(1%) = 1] - Pr{A"%0(1¥) = 1]| < neglk) role assignment, permission assignment, contextual tonsli
Pr{A” 0(1%) = 1] < 3 + neglK) and role hierarchy graph.
(10) Role Assignment: In order to deploy a role assignment pol-
Sum upS ucg(K) andPr[A”0(1¥) = 1]: icy, an Admin User performs a first round of encryption on the

client side (see Algorithi]5) and sends the client encrypitsl
assignment policy to the Administration Point. The Adminis

1+ neglk) > %Pr[ﬂ(RA(IEO), TD(o)) = 0]+ tration Point performs another round of encryption on theese

%Pr[ﬂ(RA(I:O), TD(ry)) = 1]+ side (see Algorithriil6) before storing role assignment pahc
$PIIARAL), TD()) = 0]+ the Policy Store. Figure I0{a) shows performance overhead o
%Pr[ﬂ(RA(Ifl),TD(r*l)) =1] 1 the client side, as well as on the server side in order to geplo

= $PrARALD). TD(Fp)) = 0]+ A arole assignment policy. In this graph, we observe the per-
§+ formance by increasing number of roles in a role assignment
Ipr[ARALL, TD()) = 1]+ pohcy. As_ we can exp(_act, the p_erformance overhead incsease

_ i + Sucél(k) linearly with the linear increase in the number of roles ioler

-2

assignment policy. As we can notice, the graph grows ligearl
with the linear increase in the number of roles in the role as-
signment policy.

During the policy deployment phase, the encryption algo-
7.4. Revealing Policy Structure rithm on the client side (Algorithrfll3) takes more time that of

the server side (Algorithia 4) as shown in Figliré 10. The en-

The policy structure reveals information about the opesato cryption algorithm on the client side takes more time beeaius
such as AND and OR, and the number of operands used iperforms more complex cryptographic operations such as ran
the contextual condition. To overcome this problem, dummydom number generation and hash calculation as illustrated i
attributes could be inserted in the tree representing xarsk Algorithm [3. However, any policy is deployed very rarely;
conditions. Similarly, the PIP can send dummy attributebéo whereas, it may be evaluated quite frequently. Therefdwe, t
PDP at the time of policy evaluation to obfuscate the number operformance overhead of the policy evaluation phase (désal
attributes required for evaluating any contextual conditi in Sectior{8.B) is of great importance.

16

ThereforeS uc€'(K) < 3 + negl(K).

900 F " client side —e— " 900 F Clientside —e— | o™ 900 FT Clien'side —e— 7
& 800 Serverside ---#--—- R & 800 Serverside ---#--—- e R & 800 Serverside ---#--- 1
° 700 | - ° 700 2 700 |
3 600 . 3 600 S 600 -
[} (7] Q
2 500 | E 2 500 2 500 |
E 400l 1 £ 400 e “or
S 300 | . S 300 S 3800 |
£ 200 | 4 £ 200 E 200 |
= = = m-
100 | E 100 100 | T 4
1 I I I
0 0 0
0 0 5 10 15 20 5 10 15 20 25
Number of roles assigned to a user Number of permissions assigned to a role Number of roles in a role hierarchy graph

@) (b) (c)

Figure 10: Performance overhead of deploying RBAC poliffa}roles assigned to a uger,](b) permissions to a rolg ahd ¢t aierarchy graph

Permission Assignment: For deploying permissions to a comparison of sizes may be equivalent t® string compar-
role, an Admin User performs a first round of encryption onisons in the worst case. For string comparisons, we have used
the client side (see Algorithiid 7) and sends both the client en*attributeName=attributeValug’, wherei varies from 1 to 10.
crypted role and client encrypted permissions to the Adsaini For numerical comparisons, we have usattributeName <
tration Point, where each permission contains both an ractiol5#4"F
and a target. The Administration Point generates the server To check how the size of the bit representation impacts on
crypted role and server encrypted permissions after paify the encryption functions during the deployment phase, we ha
a second round of encryption on the server side (see Algorith performed the following experiment. We fixed the number of
). Figure[I0(H) shows the performance overhead of deployaumerical comparisons in the contextaul condition to omlg o
ing a permission assignment policy. This graph illustrébes and increased the siz®f the bit representation from 2 to 20 for
performance of deploying a permission assignment policafo the comparisondttributeName< 2° — 1. Figurd TI(H) shows
role with a number of permissions ranging from 1 to 20. As wethe performance overhead of the encryption during the yolic
can expect, the performance overhead increases lineatty wideployment phase on the client side, as well as on the server
the linear increase in the number of permissions in the germi side. We can see that the policy deployment time incurred
sion assignment policy. grows linearly with the increase in the siseof a numerical

Contextual Conditions: Both role assignment and permis- attribute. In general, the time complexity of the encryptaf
sion assignment policies include a contextual conditiowas the contextual conditions during the policy deploymentsgha
can see in Figurl 2 and Figurk 3, respectively. The contextuds O(m + ns) wherem is the number of string comparisons,
condition is represented as a tree structure as illustiatedy- IS the number of numerical comparisons, apresents the
ure[@. During the policy deployment phase, an Admin Usenumber of bits in each numerical comparison.
encrypts each leaf node of the tree (see Algoriflim 9) whi¢e th Role Hierarchy Graph: The PDP may search for a base role
Administration Point re-encrypts each leaf node (see Algor of the one in the access requ&EQsince a derived role in-
[I0) and finally stores the tree in the Policy Store either & th herits all permissions from its base role. For supportirig th
Role Repository or the Permission Repository. search, we deploy a role hierarchy graph. For deployinge rol
Ieaihierarchy graph, an Admin User performs the first round in or-

In the tree representing contextual conditions, der t te the client ted trand Il aalt
nodes represent string comparisons (for instance,er 0 génerate the client encrypted trapdoor, as well aaio ¢

: ; : culate the client generated trapdoor of each role in thelgrap
Location= Cardiologywar andor numerical compar- . . .
isons (for instanceA?:gess'lqi)me d P (see Algorithni_Ill). The Admin User sends the client gendrate

> 9). A string comparison is always represented by a singléole hierarc'hy graph to the Administration Point. The Admin
leaf node while a numerical comparison may require moréstratlon Point performs the second round to generate tiverse

than one leaf nodes. In the worst case, a single numericzﬁncrypted trapdoor, as well as to calculate the server ger
comparison, represented abits, may requires separate leaf trapdoor of each role in the graph (see Algorifith 12). The PDP

nodes. Therefore, numerical comparisons have a major Mpa@atCheS the trapdoor of role REQwith the server encrypted
on the encryption ’of a policy at deployment time role and if this match is successful, it finds trapdoors of the

base roles. The trapdoors of base roles are required in trder

_ Figure[11{d) illustrates the performance overhead of §eplo perform search in the list of server encrypted roles in the Pe
ing numerical and string comparisons. In this graph, we inyission Repository.

crease the number of string comparisons and numerical com- In our experiment, we consider a role hierarchy graph in
parisons present in the contextual condition of a policy. ASyhich each rolR extends roleR.,; for all values ofi from 0
the graph, the time taken by deployment functions on the

client side and the server side grow linearly with the num-

ber of comparisons in the contextual condition. The numer-- 2 shoyid be noted that using the comparison less than 15 ibiardpre-
ical comparisons have a stepper line because one numericahtation represents the worst case scenario requiriraf Adeles.

17

T T T T T T T T
600 Numeric: Client side —e— - 600 |- Client side —e— -
Numeric: Server side ---m--- Server side ---m---
String: Client side ---©---
500 | String: Server side - . 500 | 4
0 @
g k=
S 400 B § 400 E
< o
Q @
« n
£ 300 . c 300
£ g
E 200 - o] £ 200
;Lﬁ”";}‘-h;_
100 | B 100
- - —’r‘;ﬁ;;;_ir T
P - iy .
0 2 4 6 8 10
Number of comparisons in a contextual condition Number of bits per numerical attribute

(a) (b)

Figure 11: Performance overhead of deploying contextualitions:[{a) numerical and string comparisons @n{i (b) sizemfraerical attribute

ton— 1 wheren indicates the total number of nodes and variesgeneration does not depend on any parameters and can be con-

from 5 to 25. Figur¢ T0(¢) shows the performance overhead ddidered constant.

encrypting a role hierarchy graph both on the client sidethad Searching a Role in Role Repository/Session: In order to

server side. The graph grows linearly with the number ofole grant ACT, the PDP needs to search roles in the Role Repos-

in arole hierarchy graph. itory. For searching a role, the PDP first calculates theeserv
generated trapdoor of role CT and then matches this server

Table 1: Performance overhead of encrypting requests dthiengolicy evalu- encrypted trapdoor with server encrypted roles in the rele a

ation phase signment list as illustrated in Algorithi1L6. Figiire 12 (apw's
Request Type | Time (in milliseconds) the performance overhead (in the worst case) of perfornhiisg t
ACT 16.353 search. In this graph, we can observe that it grows lineaitly w
REQ 47.069 increase in number of roles. As the graph indicates, thekear

function takes initial approximately 4 milliseconds to geste
the server encrypted trapdoor of roleACT while it takes ap-
proximately 06 milliseconds to perform encrypted match.

The PDP grant&CT by adding the server encrypted role of
In this section, we analyse the performance of the policythe Requester in the Active Roles repository of the Session.
evaluation phase_ In this phase, a Requester sends th@m'[try This |mp||es that the Session maintains a list of activegole
request to the PEP running in the outsourced environmemt. THONCe a Requester makes an access reiQtthe PDP has to
PEP forwards the encrypted request to the PDP. The PDP has$garch in the Session if she is already active in role inelctat
select the set of policies that are applicable to the reqiést ~ REQ The performance overhead of searching a role in session
PDP may require contextual information in order to evaluatdS Same as it incurs for searching a role in the Role Repgsitor
the selected policies. In the following, we calculate the- pe (Shown in Figurg¢ 12(&)).
formance overhead of generating requests, search ardfee(in Searching a Role in Permission Repository: After finding
Role Repository, in the Active Roles repository or in the-Per the role ofREQin the list of active roles, the PDP has to search
mission Repository), searching a permission, evaluatowy ¢ if the same role has the requested permission. For this parpo
textual conditions and searching arole in arole hierarchply. the PDP has first to search the roleREQin the Permission
Generating Requests. A Requester may send the role ac- Repository and if any match is found, it has to search the re-
tivation requestACT. In order to generatdCT, a Requester quested permission in the list of permissions assignedéo th
calculates the client generated role (see Algorifhf 13)is Th found role. Figur¢ I2(b) shows the performance overhead (in
trapdoor generation of role takes 16.353 millisecondslas-il the worst case) of searching a role in the Permission Reposi-
trated in Tabl€1l. After a Requester is active in a role, shg matory. The graph grows linearly with the increase in the numbe
make an access requd3EQ. A Requester has to calculate of roles in the Permission Repository. The PDP runs Algarith
trapdoor for each element (including role, action and trige [I8 but with a slight modification of ignoring the server trapd
REQ TheREQgeneration takes 47.069 milliseconds as illus-generation (in Lin€]2) as it is already generated when theeabl
trated in Tabl€Il. We can see tlREEQgeneration takes 3 times REQis searched in the session. This is why, searching a role in
of ACT generation becausREQ has to calculate 3 trapdoors the Permission Repository (as illustrated in Fidure J2@Res
while ACT has to generate only a single trapdoor. The requedess time than searching a role in the Role Repository oli@ess

18

8.3. Performance Analysis of the Policy Evaluation Phase

Time (in seconds)

—~ 30 - T T, ! ! T —~ 30 - T AL T T
3 Server side —=— 3 Server side —=—
§ 25 - S 25 _
(&) (&}
§ 20 . § 20 .
€ 15 . € 15 .
| ./././././I/'/.*. | € 10]
E Sf 1 E 57 .
= 0 1 1 1 1 1 = 0 1 1 1 1
0 2 4 6 8 10 0 5 10 15 20
Number of roles in Role Repository/Session Number of roles in Permission Repository
(a) (b)
—~ - ! ! ! —~ T T T T T4
2 30 Server side —=— 2 30 Server side —=—
§ 251 § 25 —
(8} (8]
ﬁ 20 2 20 .
€ 15 € 15 —
E 10 E 10 .
))
= i N £ I N
= 0 1 1 1 1 = o L 1 1 1 1
0 5 10 15 20 5 10 15 20 25
Number of permissions assigned to role Number of roles in role hierarchy graph
() (d)
Figure 12: Performance overhead of evaluating RBAC policies
| LT T T " T - T T T
Numeric: Client side —e— , Client side —e—
2 r Numeric: Server side ---m--- /7] 2 - serverside ---m--- 7
String: Client side ---o--- ./
String: Server side &/ >
15 - 2 15 -
, (%]
1F Ve . £ 1t]
el £
- T osf -
5 10 15 20
Number of attributes Number of bits per numerical attribute

() (b)

Figure 13: Performance overhead of evaluating contextualitions

19

(asillustrated in Figurg 12{a)). the PIP provides only string attributes and the contextoal ¢
Searching a Permission: After a role is found in the Permis- dition contains only string comparisons; in the second Rtie¢
sion Repository, the PDP searches the requested permissionprovides only numerical attributes and the contextual ¢ard
the list of permissions assigned to the found role (see Atlgor ~ consists only of numerical comparisons. For both cases, the
[I7). Before searching the list of permissions, the PDP has taumber of attributes varies together with the number of com-
calculate server generated trapdoors of both the actiorttend parisons in the tree. In particular, if the PIP providedifferent
target present iREQ As we explained earlier, a single trap- attributes then the contextual condition will contaidifferent
door generation on the server side takes approximately 4 micomparisons.
liseconds. The trapdoor generation of the requested p&ionis Figure[I3(d) shows also the performance overhead of evalu-
containing an action and a target, takes 8 milliseconds.t,Nexating string and numerical comparisons on the server sige. A
the PDP match (server generated trapdoors of) this reqliesteve can see, the condition evaluation for numerical atteiblias
permission with the list of (sever encrypted) permissioss a a steeper curve. This can be explained as follows. For thte firs
signed to the found role. Figufe T2(c) shows the performancease, for each string attribute only a single trapdoor isegen
overhead (in the worst case) of searching server generajed t ated. A string comparison is represented as a single leaf nod
door of permission with a list of server encrypted permissio in the tree representing a contextual condition. This méaats
The graph grows linearly with the increase in the number oh trapdoors in a request are matched agaimisaf nodes in the
permissions in the list. For each permission match, the PDRee resulting in @(nm) complexity (however, in our experi-
performs (at most) two encrypted matches each incurring apnents the number of attributes and the number of comparisons
proximately 0.6 milliseconds. are always the same). For the case of the numerical attsibute
Evaluating Contextual Conditions. For evaluating role as- we have also to take in to consideration the bit represemtati
signment (illustrated in FigurEl 2) or permission assigntmenlin particular, for a give numerical attribute representesaits,
(illustrated in Figurd3) policies, the PDP may need to evalwe need to generatdifferent trapdoors. This means timatu-
uate contextual conditions. For evaluating contextualdéon merical attributes in a request will be converted im&differ-
tions, the PDP needs to fetch contextual information froe th ent trapdoors. These trapdoors then need to be matchedtgain
PIP. The The PIP is responsible to collect and send the rahe leaf nodes representing the numerical comparisonsiré-ig
quired contextual information that include informationoab [I3(b] shows the performance overhead of evaluating a numer-
the Requester (for instance, Requester’s location or Rege ical comparison where the size of a numerical attributeegari
age) or the environment in which the request is made (for infrom 2 to 20. As we have discussed for the policy deployment
stance, time or temperature). The PIP transforms these gphase, in the worst case scenario, a numerical comparisen fo
tributes into trapdoors before sending to the PDP (asilitest s-bit numerical attribute requiresdifferent leaf nodes. In atree
in Algorithm[I8). For each single string attribute (for iaste, with mdifferent numerical comparisons, this means thanthe
Location:= Cardiologyward), the PIP generates a single trap- trapdoors need to be matched agamstresulting inO(nm<)
door. For each numerical attribute of size s-bit (for insggn complexity.
AccessTime:: 10#5), the PIP generates s trapdoors. Figure Searchinga Role Hierarchy Graph: The PDP may search a
[I3(a) shows the performance overhead of generating trapdoorole in the role hierarchy graph. For performing this seavah
by the PIP on the client side for both numerical and string atconsider a role hierarchy graph in which each mlextends
tributes. In our experiment, we vary number of attributestifb role R,,; for all values ofi from 0 ton — 1 wheren indicates
string and numeric) from 1 to 10. As we can see, the graplthe total number of nodes and varies from 5 to 25. Fifjure 12(d)
grows linearly with the increase in number of attributes: e~ shows the performance overhead of searching a role in the rol
merical attributes, the curve of trapdoor generation orclieat hierarchy graph deployed on the server side. As we can ex-
side is steeper than that of the string attributes becausemu pect, the graph grows linearly with the number of roles inla ro
cal attribute is of size s bits where s is set to 4. This meaats th hierarchy graph.
each numerical attribute requires 4 trapdoors; on the bided, Comparing ESPOOMggac With ESPOON We com-
a string attribute requires only a single attribute. We olse pare the performance overheads of the policy evaluation of
also the behaviour of generating client trapdoors for a mitme ESPOONRggac With that of ESPOON[Iﬂ]. Before we show
cal attribute of varying size. Figufe 13(b) shows behavigiur the comparison, we see how policies are expressed in both
generating on the client side trapdoors of a numericakaiiei ESPOONgrgacaNdESPOON The ESPOONRggacpolicies are
of varying size ranging from 2 to 20 bits. This graph grows lin explained in Sectioh 4l2. THESPOONpolicy is expressed as
early with the increase in number of bits, representingsfze a(S, A, T) tuple with aCONDITION, meaning ifCONDITION
numerical attribute. holds then subjec$ can take actio\ over targefl. For com-
After receiving trapdoors of contextual information, tHeHP paring the performance overheads, we conditf&POONpoli-
may evaluate a contextual condition. To evaluate the tree re cies with 50 unique subjects and each subject has 10 unique
resenting a contextual condition, the PDP matches corgkextuactions and targets where eat® A, T) tuple’s condition is
information against the leaf nodes in the tree, as illusttan the conjunction (AND) of the contextual condition illusted
Algorithm[20. To quantify the performance overhead of this e in Figure[4 andRequesterName<NAME>. That is, a subject
crypted matching, we have performed the following teststi-ir can execute action over the target provided subject’s name i
we have considered two cases: the first case is the one in whi@gual to one specified in the condition, subject’s locati®n i

20

T
Role Activation Processing £

heritance relationship between roles. Figuré 14 showsw ver
s00 * q Role Foararchy Craph Tiaveres) | slight performance gain to evaluate the access requessa ca
 focess Red of role hierarchy iINnESPOONRgac Since the permission can
] be associated with base role, we need to traverse in the role
hierarchy graph to find base roles. The performance of tsaver
1 ing in the role hierarchy graph is shown in Figliré 14. Finally
the requested permission is granted if associated everawjth
. base roles. The role hierarchy may improve performancenbut i
the worst case it incurs higher overhead. However, the perfo
, mance ofESPOONMNggacWith role hierarchy is still better than

uest with Base Role Processing 77375

400

300

Time (in milliseconds)

200

100

that of ESPOON
0 & < <&
%Oo %Oo ,%Oo .
v % %55, 9. Conclusions and Future Work
o Vo,

In this paper, we have presented tBEPOONggac archi-
Figure 14: Performance comparisorE8BPOONandESPOONReAc tecture to support RBAC policies for outsourced environtsen
Our approach separates the security policies from the laatua
) S . forcing mechanism while guaranteeing the confidentiality o
cardiology-ward and time is between 9 AM and 5 PM. Simi-RpaC policies assuming the SP is honest-but-curious. The
larly, we consideESPOONRrgacpolicies with 50 unique roles main advantage of our approach is that RBAC policies are en-
and each role has 10 unique permissions, where each user c@jpted but it still allows the PDP to perform the policy eval
get active in 5 roles. The introduction of RBAC simplifies ,ation without revealing contents of requests or polic®sc-
the roles and permission management because we can enfoggeq ESPOONRgacis capable of handling complex contextual
possible conditions at role activation time instead of enif@ conditions involving non-monotonic boolean expressiond a
them at the permission grant time. For instance, we can effange queries. Finally, the authorised users do not share an
force location and time checks (i.e., the condition illated encryption keys making the process of key management very
in Figure[3) at the role activation time while the condition gcg1aple. Even if a user key is deleted or revoked, the other e
RequesterName<NAME> can be enforced at the permission jties are still able to perform their operations withoujuging
granttime. re-encryption of RBAC policies.

Figure[14 shows the performance overheads of evaluating As future directions of our research, we are working on inte-
ESPOONand ESPOONRggac policies. InESPOON a re- grating a secure audit mechanisnE8POONggac The mech-
quester’s subject is matched with one in the repository & 50 anism should allow the SP to generate genuine audit logs with
entries (i.e., 50 subjects each with 10 actions and targéts) out allowing the SP to get information about both the data and
there is any match, requester's action and target are nthtchehe policies. However, an auditing authority must be ableto
and then condition is evaluated. In the worst cas&3RPOON trieve information about who accessed the data and whatypoli
the access request processing can take approximately @0to 5was enforced for any access request made. Another direftion
milliseconds. On the other hand, BEEPOONRsac a requester our work is towards the extension of the encrypted search and
first gets active in a role provided condition holds. The rOlematch Capabi"ties to handle the case of negative authmnsa
activation can take approximately up to 60 milliseconds&or policies and policies for long-lived sessions where thedéon

user that can get active in 5 roles. After the role activat®n tions need to be continuously monitored and the attribufes o
requester can be granted permissions assigned to its rofe- H the request can be dynamically updated.

ever, first the active role is searched in the session and then
the permission can be granted if the condition associatéd wi
that permission holds. As we can see in Figuré 14, gratindAcknowledgment
the permission takes up to 42 milliseconds. The reason why
ESPOONRgacperformance is better than thatBSPOONbe- The work of the first and third authors was supported by the
cause (i) all possible conditions are enforced at the rdigaaC EU FP7 research grant 257063 (project ENDORSE) while the
tion time and (ii) introduction of roles simplified the rolasad work of the fourth author was supported by the Italian MIUR
permissions management. PRIN (project Autonomous Security).
We also consider thefliect of role hierarchies on the
ESPOONRgac performance. In a role hierarchy, we assume
that a role can inherit all permissions from its base roleisTh REFERENCES
simplifies the role management and permission assignment to _ . . _
roles. In our experimentation, we consider 50 roles whecha ea 1 Muhammad Rizwan Asghar, Mihaela lon, Giovanni Russelhl Bruno
.. . Crispo. ESPOON: Enforcing Encrypted Security Policies inourced
role has 5 permissions. Furthermore, there is a role hieyarc Environments. IfThe Sixth International Conference on Availability, Re-
graph containing 25 roles, which is necessary for finding in- liability and Security ARES’11, pages 99-108, August 2011.

21

(2]

(3]

(4

(5]

el

(7]

(8]

El

(10]

(11]

(12]

(13]

(14]

(18]

(16]

(17]

Muhammad Rizwan Asghar, Giovanni Russello, and Bruno goris
Poster: ES POONRreac Enforcing security policies in outsourced en-
vironments with encrypted rbac. Proceedings of the 18th ACM con-
ference on Computer and communications secu@iyS '11, pages 841—
844, New York, NY, USA, 2011. ACM.

Mikhail J. Atallah, Marina Blanton, Nelly Fazio, and KkiB. Frikken.
Dynamic and #icient key management for access hierarchiégsCM
Trans. Inf. Syst. Secyfi2:18:1-18:43, January 2009.

Joonsang Baek, Reihaneh Safavi-Naini, and Willy SusiRublic key
encryption with keyword search revisited. In Osvaldo GernBeniamino
Murgante, Antonio Lagan, David Taniar, Youngsong Mun, anarilt
Gavrilova, editorsComputational Science and Its Applications ICCSA
2008 volume 5072 ol ecture Notes in Computer Sciengages 1249—
1259. Springer Berlir Heidelberg, 2008.

J. Bethencourt, A. Sahai, and B. Waters. Ciphertexiepaittribute-based
encryption. InSecurity and Privacy, 2007. SP '07. IEEE Symposium on
pages 321 —-334, may 2007.

Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, &maseppe Per-
siano. Public key encryption with keyword search. In ChaistCachin
and Jan Camenisch, editorAdvances in Cryptology - EUROCRYPT
2004 volume 3027 ofLecture Notes in Computer Sciengages 506—
522. Springer Berlii Heidelberg, 2004.

Dan Boneh and Brent Waters. Conjunctive, subset, angergueries on
encrypted data. In Salil Vadhan, editdheory of Cryptographyolume
4392 of Lecture Notes in Computer Sciengeges 535-554. Springer
Berlin/ Heidelberg, 2007.

Robert W. Bradshaw, Jason E. Holt, and Kent E. Seamons.cé&zding
complex policies with hidden credentials.Rmoceedings of the 11th ACM
conference on Computer and communications secUBIES '04, pages
146-157, New York, NY, USA, 2004. ACM.

Reza Curtmola, Juan Garay, Seny Kamara, and Rafail O&yo8&arch-
able symmetric encryption: improved definitions arficéent construc-
tions. InProceedings of the 13th ACM conference on Computer and com{26]
munications securityCCS '06, pages 79—-88, New York, NY, USA, 2006.
ACM.

Sabrina De Capitani di Vimercati, Sara Foresti, Susajbdia, Stefano
Paraboschi, Gerardo Pelosi, and Pierangela Samarati. nAngseonfi-
dentiality of security policies in data outsourcing. Rroceedings of the
7th ACM workshop on Privacy in the electronic soci®PES '08, pages
75-84, New York, NY, USA, 2008. ACM.

Sabrina De Capitani di Vimercati, Sara Foresti, Sushjbodia, Stefano
Paraboschi, and Pierangela Samarati. A data outsourcimifemitire
combining cryptography and access control Phaceedings of the 2007
ACM workshop on Computer security architectu@SAW '07, pages 63—
69, New York, NY, USA, 2007. ACM.

Sabrina De Capitani di Vimercati, Sara Foresti, Sushjbdia, Stefano
Paraboschi, and Pierangela Samarati. Over-encryption: gearent of
access control evolution on outsourced dataPioceedings of the 33rd
international conference on Very large data ba3éisDB '07, pages 123—
134. VLDB Endowment, 2007.

Changyu Dong, Giovanni Russello, and Naranker Dulaypar8d and
searchable encrypted data for untrusted servdmurnal of Computer
Security 19(3):367-397, 2011.

Philippe Golle, Jessica Staddon, and Brent Waters.ur®ezonjunctive
keyword search over encrypted data. In Markus Jakobssoti,Yvog,
and Jianying Zhou, editorsipplied Cryptography and Network Secu-
rity, volume 3089 ofLecture Notes in Computer Sciengages 31-45.
Springer Berliry Heidelberg, 2004.

Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Watexiribute-
based encryption for fine-grained access control of enetypfata. In
Proceedings of the 13th ACM conference on Computer and comaiu
tions security CCS '06, pages 89-98, New York, NY, USA, 2006. ACM.
Jason E. Holt, Robert W. Bradshaw, Kent E. Seamons, atati&liOr-
man. Hidden credentials. roceedings of the 2003 ACM workshop on
Privacy in the electronic socigty’/PES '03, pages 1-8, New York, NY,
USA, 2003. ACM.

Yong Hwang and Pil Lee. Public key encryption with camjtive key-
word search and its extension to a multi-user system. In T$uyiegagi,
Tatsuaki Okamoto, Eiji Okamoto, and Takeshi Okamoto, ediRasing-
Based Cryptography Pairing 200%olume 4575 ofLecture Notes in
Computer Sciencgages 2—22. Springer BerliHeidelberg, 2007.

(18]

(19]

(20]

[21]

[22]

(23]

[24]

(25]

(27]

(28]

[29]

(30]

[31]

(32]

(33]

(34]

(35]

22

James B.D. Joshi, Elisa Bertino, Usman Latif, and Arif @Glo&. A gen-
eralized temporal role-based access control mdB&E Transactions on
Knowledge and Data Engineering7:4—23, 2005.

Seny Kamara and Kristin Lauter. Cryptographic cloudrage. In
Radu Sion, Reza Curtmola, Sven Dietrich, Aggelos KiayiasegdViret,
Kazue Sako, and Francesc Seb, editBirsancial Cryptography and Data
Security volume 6054 of ecture Notes in Computer Scienpages 136—
149. Springer Berliri Heidelberg, 2010.

Young-Gab Kim and Jongin Lim. Dynamic activation of rola thac
for ubiquitous applications. IfProceedings of the 2007 International
Conference on Convergence Information Techngl®dGZIT '07, pages
1148-1153, Washington, DC, USA, 2007. IEEE Computer Saciety
Emil Lupu and Morris Sloman. Reconciling role based managg and
role based access control. Rioceedings of the second ACM workshop
on Role-based access con{BBAC '97, pages 135141, New York, NY,
USA, 1997. ACM.

Shivaramakrishnan Narayan, Martin Gagand Reihaneh Safavi-Naini.
Privacy preserving ehr system using attribute-basedstrfreture. IrPro-
ceedings of the 2010 ACM workshop on Cloud computing sgauatk-
shop CCSW '10, pages 47-52, New York, NY, USA, 2010. ACM.
Gustaf Neumann and Mark Strembeck. An approach to engeuee
enforce context constraints in an rbac environment.Pioceedings of
the eighth ACM symposium on Access control models and tkedies
SACMAT '03, pages 65-79, New York, NY, USA, 2003. ACM.

Alan C. O’Connor and Ross J. Loomis. Economic analy-
sis of role-based access control. Technical report, Natidn-
stitute of Standards and Technology, December 2010. Avail-
able at: http://csrc.nist.gov/groups/SNS/rbac/documents/
20101219_RBAC2_Final_Report.pdf.

K. Ondo and M. Smith. Outside it: the case for full it outscing. Health-
care financial management : journal of the Healthcare Finah&lan-
agement Associatigi0(2):92—-98, 2006.

Rafail Ostrovsky, Amit Sahai, and Brent Waters. Atttisibased encryp-
tion with non-monotonic access structures. Piroceedings of the 14th
ACM conference on Computer and communications se¢lZigs '07,
pages 195-203, New York, NY, USA, 2007. ACM.

Hyun Sook Rhee, Jong Hwan Park, Willy Susilo, and Dongibee.
Trapdoor security in a searchable public-key encryptidresze with a
designated testerJournal of Systems and Softwa@&3(5):763 — 771,
2010.

Giovanni Russello, Changyu Dong, and Naranker DulayuthArisa-
tion and conflict resolution for hierarchical domainBolicies for Dis-
tributed Systems and Networks, IEEE International Worgsi o 0:201—
210, 2007.

Amit Sahai and Brent Waters. Fuzzy identity-based eptooy. In Ronald
Cramer, editor Advances in Cryptology EUROCRYPT 20@8lume
3494 of Lecture Notes in Computer Sciengeges 557-557. Springer
Berlin / Heidelberg, 2005.

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, andrieh E.
Youman. Role-based access control modétsmputer 29:38-47, Febru-
ary 1996.

Jun Shao, Zhenfu Cao, Xiaohui Liang, and Huang Lin. Rros-
encryption with keyword searchinformation Sciencesl80(13):2576 —
2587, 2010.

Dawn Xiaodong Song, David Wagner, and Adrian Perrigaccal tech-
niques for searches on encrypted dataPtoceedings of the 2000 IEEE
Symposium on Security and PrivaSP '00, pages 44-55, Washington,
DC, USA, 2000. IEEE Computer Society.

Mark Strembeck and Gustaf Neumann. An integrated apprtaengi-
neer and enforce context constraints in rbac environmef®M Trans.
Inf. Syst. Secur7:392—-427, August 2004.

Peishun Wang, Huaxiong Wang, and Josef Pieprzyk. Totdgrivacy
preserving keyword searches. In Viliam f&et, Juhani Karhumki, Al-
berto Bertoni, Bart Preneel, Pavol Nvrat, and Mria Bielikeglitors SOF-
SEM 2008: Theory and Practice of Computer Scienvodume 4910 of
Lecture Notes in Computer Sciengeges 646—658. Springer Berlin
Heidelberg, 2008.

R. Yavatkar, D. Pendarakis, and R. Guerin. letf rfc 27B3¥ramework
for policy based admission control, January 2000. Availallattp://
docstore.mik.ua/rfc/rfc2753.html.

http://csrc.nist.gov/groups/SNS/rbac/documents/20101219_RBAC2_Final_Report.pdf
http://csrc.nist.gov/groups/SNS/rbac/documents/20101219_RBAC2_Final_Report.pdf
http://docstore.mik.ua/rfc/rfc2753.html
http://docstore.mik.ua/rfc/rfc2753.html

Vitae

Muhammad Rizwan Asghar received
his B.Sc. (Hons.) degree in Com-
puter Science from University of the
Punjab, Lahore, Pakistan, in 2006. In
2009, he obtained his M.Sc. degree in
Information Security Technology from
Eindhoven University of Technology, the
Netherlands. He joined Create-Net (an
international research center based in
Trento, Italy) in 2010. Currently, he is
a Ph.D. candidate at University of Trento, Italy. His resbkar
interests include access controls, applied cryptogragloyd
computing, security and privacy.

Mihaela lon received her B.Sc. in Infor-
mation Technology and M.Sc. in Com-
puter Science from International Univer-
sity in Germany. During her studies, she
conducted various research projects with
University of Marseille in France, SAP
Waldorf and IBM Research Boeblingen
in Germany. She joined CREATE-NET
in 2007 where she’s been working on
various EU and Italian projects. Her re-
search topics include data confidentiality in pulbshoscribe
systems, privacy for e-health applications, distribuehtity
and trust management. She is currently a Ph.D. candiddie at t
University of Trento working on security of publigubscribe
systems.

Giovanni Russellois a lecturer at the
University of Auckland, New Zealand,
and leads the Security technical group
within the INSPIRE area at CREATE-
NET in Trento, Italy. Giovanni received
his M.Sc. (summa cum laude) in Com-
puter Science from University of Cata-
nia, Italy in 2000. In 2006, he obtained
his Ph.D. from the Eindhoven Univer-
sity of Technology. After obtaining his
Ph.D., Giovanni moved to the Policy Group in the Depart-
ment of Computing at Imperial College London. Giovanni's re
search interests include policy-based security systeraqy
and confidentiality in cloud computing, smartphone segurit
and applied cryptography.

Bruno Crispo received his Ph.D. in

Computer Science from University of
Cambridge, UK in 1999, having awarded
a M.Sc. in Computer Science from Uni-
versity of Turin, Italy in 1993. He is

an associate professor at University of
Trento since September 2005. Prior to
that he was Associate Professor at Vrije
Universiteit in Amsterdam, He is Co-

Editor of the Security Protocol Interna-

ACM and senior member of IEEE. His main research inter-
ests spans across the field of security and privacy. In pdatic

his recent work focus on the topic of security protocols, ac-
cess control in very large distributed systems, distrithydel-

icy enforcement, embedded devices and smartphone security
and privacy and privacy-breaching malware detection. He ha
published more than 100 papers in international journats an
conferences on security related topics.

tional Workshop proceedings since 1997. He is member of

23

	Introduction
	Motivation
	Research Contributions
	Organisation

	Related Work
	Overview of RBAC Models
	The ESPOONERBAC Approach
	System Model
	Representation of RBAC Policies/Requests

	Solution Details
	Initialisation Phase
	Policy Deployment Phase
	Policy Evaluation Phase
	User Revocation Phase

	Algorithmic Details
	Initialisation Phase
	Policy Deployment Phase
	Policy Evaluation Phase
	Revocation Phase

	Security Analysis
	Preliminaries
	Security of Encryption Algorithms in the Policy Deployment Phase
	Security of Algorithms in the Policy Evaluation Phase
	Revealing Policy Structure

	Performance Analysis
	Implementation Details
	Performance Analysis of the Policy Deployment Phase
	Performance Analysis of the Policy Evaluation Phase

	Conclusions and Future Work

