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Abstract

Data outsourcing is a growing business modgiing services to individuals and enterprises
for processing and storing a huge amount of data. It is ngt eabnomical but also promises
higher availability, scalability, and morefective quality of service than in-house solutions. De-
spite all its benefits, data outsourcing raises seriousrsg@oncerns for preserving data con-
fidentiality. There are solutions for preserving confidelity of data while supporting search
on the data stored in outsourced environments. Howeven, solations do not support access
policies to regulate access to a particular subset of thedtiata.

For complex user management, large enterprises employBaaled Access Controls (RBAC)
models for making access decisions based on the role in véhigter is active in. However,
RBAC models cannot be deployed in outsourced environmenthey rely on trusted infras-
tructure in order to regulate access to the data. The depoiyof RBAC models may reveal
private information about sensitive data they aim to proteln this paper, we aim at fill-
ing this gap by proposingSPOONMgrgac for enforcing RBAC policies in outsourced environ-
ments.ESPOONRrgac enforces RBAC policies in an encrypted manner where a csisewvice
provider may learn a very limited information about RBAC ip@s. We have implemented
ESPOONRrgacand provided its performance evaluation showing a limiteerloead, thus con-
firming viability of our approach.

Keywords: Encrypted RBAC, Policy Protection, Sensitive Policy Eeion, Secure Cloud
Storage, Confidentiality;

1. Introduction

In recent years, data outsourcing has become a very atgdumtisiness model. Itfiers
services to individuals and enterprises for processingsémrihg a huge amount of data at very
low cost. It promises higher availability, scalability,camore défective quality of service than
in-house solutions. Many sectors including governmentragadthcare, initially reluctant to data
outsourcing, are now adopting 25].
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Despite all its benefits, data outsourcing raises seriotigisg concerns for preserving data
confidentiality. The main problem is that the data storedutsourced environments are within
easy reach of service providers that could gain unauttebdseess. There are several solutions
for guaranteeing confidentiality of data in outsourced emmments. For instance, solutions as
those proposed iﬂh@w]{er a protected data storage while supporting basic seapelitities
performed on the server without revealing information dlibe stored data. However, such
solutions do not support access policies to regulate thesado a particular subset of the stored
data.

1.1. Motivation

Solutions for providing access control mechanisms in aurtssd environments have mainly
focused on encryption techniques that couple access goligith a set of keys, such as the
one described in [10]. Only users possessing a key (or a daeddrchy-derivable keys) are
authorised to access the data. The main drawback of thag#éosslis that security policies are
tightly coupled with the security mechanism, thus incugimgh processing cost for performing
any administrative change for both the users and the psliejgresenting the access rights.

A policy-based solution, such the one described for the Botahguage in|E8], is more
flexible and easy to manage because it clearly separatesc¢hsdtyg policies from the enforce-
ment mechanism. However, policy-based access controlanéxahs are not designed to operate
in outsourced environments. Such solutions can work onlgnitihey are deployed and oper-
ated within a trusted domain (i.e., the computational emriment managed by the organisation
owning the data). If these mechanisms are outsourced to tamsted environment, the access
policies that are to be enforced on the server may leak irdtiom on the data they are protect-
ing. As an example, let us consider a scenario where a hbspgautsourced its healthcare data
management services to a third party service provider. \&enas that the service provider is
honest-but-curious, similar to the existing literaturedatta outsourcing (such aE[lZ]), i.e., itis
honest to perform the required operations as describecipribtocol but curious to learn infor-
mation about stored or exchanged data. In other words, théseprovider does not preserve
data confidentiality. A patient’s medical record should Bsogiated with an access policy in
order to prevent an unintended access. The data is store@mwrccess policy. As an example,
let us consider the following access polignly a Cardiologist may access the datrom this
policy, it is possible to infer important information abdbe user's medical conditions (even if
the actual medical record is encrypted). This policy revélat a patient could have heart prob-
lems. A misbehaving service provider may sell this infoiiorato banks that could deny the
patient a loan given her health conditions.

Now-a-days, the most widely used security model is RoleeBasccess Controls (RBAC)
[@] that makes decision based on role in which a user isadmi@]. However, the current
variants of RBAC model cannot be deployed in outsourcedenments as they assume a trusted
infrastructure in order to regulate access on data. In RBA@ets, RBAC policies may leak
information about the data they aim to protect. Asgéiaal. [|ﬂ] proposeESPOONthat aims
at enforcing authorisation policies in outsourced envinents. They extenESPOON[Iﬂ] to
support RBAC policies and role hierarchie’s [2]. Howeveeythonsider that the role assignment
is performed by the Company RBAC Manager, which is run in thsteéd environment.

1.2. Research Contributions
In this paper, we present an RBAC mechanism for outsourceidosiments where we sup-
port full confidentiality of RBAC policies. We named our sttitn ESPOONRgac (Enforcing
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Security Policies in OutsOurced envirOnmeNts with Enagd®BAC). One of the main advan-
tages oESPOONRgacis that we maintain the clear separation between RBAC diand the
actual enforcing mechanism without loss of policies comfiddity under the assumption that
the service provider is honest-but-curious. Our approdiova enterprises to outsource their
RBAC mechanisms as a service with all the benefits assoaiatidhis business model without
compromising the confidentiality of RBAC policies. Sumnsarg, the research contributions of
our approach are threefold. First, the service providesamé learn anything about RBAC poli-
cies and the requester’s attributes during the policy depémt or evaluation processes. Second,
ESPOONRgacis capable of handling complex contextual conditions (& pARBAC policies)
involving non-monotonic boolean expressions and rangeiegieThird, the system entities do
not share any encryption keys and even if a user is deletegl/oked, the system is still able to
perform its operations without requiring re-encryptiorRBBAC policies. As a proof-of-concept,
we have implemented a prototype of our RBAC mechanism antysethits performance to
guantify the overhead incurred by cryptographic operatiased in the proposed scheme.

1.3. Organisation

The rest of this paper is organised as follows: Sedilon 2evevithe related work. Sec-
tion[3 provides an overview of RBAC models. Sectidn 4 preséim proposed architecture of
ESPOONRrpeac Sectior b and Sectidd 6 focus on solution details and dlguoit details, re-
spectively. Sectiohnl 7 provides security analysiE BPOOMgrgac Sectior 8 analyses the perfor-
mance overhead &SPOONRgrgac Finally, Sectiom P concludes this paper and gives dirastio
for the future work.

2. Related Work

Work on outsourcing data storage to a third party has beamsiiog on protecting the data
confidentiality within the outsourced environment. Sel&ahniques have been proposed al-
lowing authorised users to perfornflieient queries on the encrypted data while not revealing
information on the data and the que@[@b, 14,917,713 45_1,]. However, these
techniques do not support the case of users haviiigrdnt access rights over the protected data.
Their assumption is that once a user is authorised to perfaanch operations, there are no
restrictions on the queries that can be performed and tlzetdat can be accessed.

The idea of using an access control mechanism in an outsberséronment was initially
explored in[1/1; 1I2]. In this approach, Vimercatial. provide a selective encryption strategy for
enforcing access control policies. The idea is to have ateteencryption technique where each
user has a dierent key capable of decrypting only the resources a useitlimased to access.
In their scheme, a public token catalogue expresses keyatien relationships. However, the
public catalogue contains tokens in the clear that expheskdy derivation structure. The tokens
could leak information on access control policies and orptteeéected data. To circumvent the
issue of information leakage, iﬂlO] Vimercadt al. provide an encryption layer to protect
the public token catalogue. This requires each user torolha key for accessing a resource
by traversing the key derivation structure. The key deigvastructure is a graph built (using
access key hierarchield [3]) from a classical access matiirere are several issues related to
this scheme. First, the algorithm of building key derivat&iructure is very time consuming.
Any administrative actions to update access rights reghgeusers to obtain new access keys
derived from the rebuilt key derivation structure and it ®equently requires data re-encryption
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with new access keys. Therefore, the scheme is not verytdealad may be suitable for a static

environment where users and resources do not change very &econd, the scheme does not
support complex policies where contextual information rbayused for granting access rights.

For instance, only specific time and location informatiosce$ated with an access request may
be legitimate to grant access to a user.

Another possible approach for implementing an access @amgchanism is protecting the
data with an encryption scheme where the keys can be gedéraie the user’s credentials (ex-
pressing attributes associated with that user). Althohgke approaches are not devised partic-
ularly for outsourced environments, it is still possibleus®e them as access control mechanisms
in outsourced settings. For instance, a recent work by Narat/al. [@] employ the variant
of Attribute Based Encryption (ABE) proposed in [5] (i.eipBertext Policy ABE, or CP-ABE
in short) to construct an outsourced healthcare systemenbagients can securely store their
Electronic Health Record (EHR). In their solution, each EldRssociated with a secure search
index to provide search capabilities while guaranteeingnfarmation leakage. However, one
of the problems associated with CP-ABE is that the accesstate, representing the security
policy associated with the encrypted data, is not proteckadrefore, a curious storage provider
might get information on the data by accessing the attrgbetgressed in the CP-ABE poli-
cies. The problem of having the access structure expreasgdartext &ects in general all the
ABE constructions@ﬂéﬁl 5]. Therefore, this mechamis not suitable for guaranteeing
confidentiality of access control policies in outsourcediremments.

Asgharet al. [El] proposeESPOONTthat aims at enforcing authorisation policies in out-
sourced environments. IBSPOON a data owner (or someone on the behalf of data owners)
may attach an authorisation policy with the data while sit on the outsourced server. Any
authorised requester may get access to the data if sheesatisfiauthorisation policy associated
with that data. HoweveEESPOONIacks to provide support for RBAC policies. In [2], Asghar
et al. extendedESPOONto support RBAC policies and role hierarchies. However2ihthe
role assignment is performed by the Company RBAC Managdghnk run in the trusted envi-
ronment. On the other hand, in our current architecturerdleeassignment is performed by the
service provider running in the outsourced environmentther words, we have eliminated the
need of an additional online-trusted-server i.e., the CamgfRBAC Manager.

Related to the issue of the confidentiality of the acces<tire, the hidden credentials
scheme presented |E[16] allows one to decrypt cipherteliiewhe involved parties never reveal
their policies and credentials to each other. Data can beypted using an access policy con-
taining monotonic boolean expressions which must be sadi§fy the receiver to get access to
the data. A passive adversary may deduce the policy steydtar, the operators (AND, OR, m-
of-n threshold encryption) used in the policy but she dod¢daawn what credentials are required
to fulfill the access policy unless she possesses them. Baackt al. [E] extend the original
hidden credentials scheme to limit the partial disclostith® policy structure and speed up the
decryption operations. However, in this scheme, it is neyea support non-monotonic boolean
expressions and range queries in the access policy. Lddeticredentials schemes assume that
the involved parties are online all the time to run the protoc

3. Overview of RBAC Models

RBAC @] is an access control model that logically maps weethe job-function specified
within an organisation. In the basic RBAC model, a systemiathtnator or a security flicer
assigns permissions to roles and then roles are assignezits. UA user can make an access
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request to execute permissions corresponding to a roleifoméyor she is active in that role. A
user can be active in a subset of roles assigned t¢ghleiniby making a role activation request. In
RBAC, a session keeps mapping of users to roles that areactiv

In [@], Sandhtet al. extend the basic RBAC model with role hierarchies for stiting roles
within an organisation. The concept of role hierarchy idtrees the role inheritance. In the role
inheritance, a derived role can inherit all permissionsfithe base role. The role inheritance
incurs extra processing overhead as requested permisaighsbe assigned to the base role of
one in which the user might be active.

The RBAC model may activate a role or grant permissions wiaiking into account the
context under which the user makes the access request ai¢hactivation reque@mﬂ&j%,
@,Ei]. The RBAC model captures this context by defining extuial conditions. A contextual
condition requires certain attributes about the enviramroethe user making the request. These
attributes are contextual information, which may includeess time, access date and location
of the user who is making the request. The RBAC model gramtgehuest if the contextual
information satisfy the contextual conditions.

4. The ESPOONggrgac Approach

ESPOONRgacaims at providing RBAC mechanism that can be deployed in asoouced
environment. FigurEl1 illustrates the proposed architectinat has similar components to the
widely accepted architecture for the policy-based managemproposed by IETF [35]. In
ESPOONRggac an Admin User deploys (i) RBAC policies and sends them to #héminis-
tration Point that stores (i) RBAC polici¢sin the Policy Store These policies may include
permissions assigned to roles, roles assigned to userb@nol¢ hierarchy graph that are stored
in the Permission Repository, the Role Repository and thie Re@rarchy repository, respec-
tively.

A Requestermay send (1) the role activation request to #aicy Enforcement Point
(PEP). This request includes the Requester’s identifietlamdequested role. The PEP forwards
(2) the role activation request to tRelicy Decision Point(PDP). The PDP retrieves (3) the pol-
icy corresponding to the Requester from the Role Reposibtiye Policy Storeand fetches (4)
the contextual information from theolicy Information Point (PIP). The contextual information
may include the environmental and Requester’s attributeguwhich the requested role can be
activated. For instance, consider a contextual conditibere/a role doctor can only be activated
during the duty hours. For simplicity, we assume that thed@lects all required attributes and
sends all of them together in one go. Moreover, we assuméih&IP is deployed in the trusted
environment. However, if attributes forgery is an issue,RP can request a trusted authority to
sign the attributes before sending them to the PDP. The PBRates role assignment policies
against the attributes provided by the PIP checking if th#edual information satisfies contex-
tual conditions and sends to the PEP (5) the role activagspanse. In case permit the PEP
activates the requested role by updating$lessiorcontaining the Active Roles repository (6a).
Otherwise, in case afeny the requested role is not activated. Optionally, a respoas be sent
to the Requester (7) with eithsuccesr failure.

After getting active in a role, a Requester can make the ageggiest that is sent to the PEP
(1). This request includes the Requester’s identifier, dogiested data (target) and the action to

LIn the rest of this paper, by terpolicieswe mearRBAC policies
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be performed. The PEP forwards (2) the access request tdXReAfter receiving the access
request, the PDP first retrieves from the Session informatimut the Requester if she is already
active in any role (3a). If so, the PDP evaluates if the Reiguss(active) role is permitted to
execute the requested action on the requested data. Fquiipisse, the PDP retrieves (3) the
permission assignment policy corresponding to the actikeefrom the Permission Repository of
the Policy Store and fetches (4) the contextual informatiom the PIP required for evaluating
contextual conditions in the permission assignment poliy instance, consider the example
where aCardiologistcan access the cardiology report during tfice hours. The PDP evaluates
the permission assignment policies against the attribotegided by the PIP checking if the
contextual information satisfies any contextual condgiand sends to the PEP (5) the access
response. In case permit the PEP forwards the access action tolla¢a Store(6b). In case if
no contextual condition is satisfied, the PDP retrievesalehierarchy from the Role Hierarchy
repository of the Policy Store and then traverses this ri@ebhchy graph in order to find if any
base role, the Requester’s role might be derived from, hamipgion to execute the requested
action on the requested data. If so, the PEP forwards thessewtion to the Data Store (6b).
Otherwise, in case afeny the requested action is not forwarded. Optionally, a rasp@an be
sent to the Requester (7) with eittmrcces®r failure.

The main diference with the standard proposed by IETF is thaB8POONRggacarchitec-
ture is outsourced in an untrusted environment (see Higuienk trusted environment comprises
only a minimal IT infrastructure that is the applicationed$y the Admin Users and Requesters,
together with the PIP. This reduces the cost of maintainimgranfrastructure. Having the ref-
erence architecture in the cloud increases its availghalitd provides a better load balancing
compared to a centralised approach. In outsourced enveotsE SPOOMggacguarantees that
the confidentiality of policies is protected not only whepyttare deployed but also when they
are enforced. Thisfters a more &icient evaluation of policies. For instance, a naive sotutio
would see the encrypted policies stored in the cloud and B éeployed in the trusted envi-
ronment. At each evaluation, the encrypted policies woelddnt to the PDP that decrypts the
policies for a cleartext evaluation. After that, the paineed to be encrypted and send back
to the cloud. The&ervice Provider, where the architecture is outsourced, is honest-butasri
This means that the provider allows tB&POOMgsac cOmponents to follow the specified pro-
tocols, but it may be curious to find out information about tla¢a and the policies regulating
the accesses to the data. As for the data, we assume thabdétieatiality is preserved by one
of the several techniques available for outsourced enmiemis Q? 1]. However, to the
best of our knowledge, no solution exists that addresseprtitdem of guaranteeing the policy
confidentiality while allowing an féicient evaluation mechanism that is clearly separated from
the policies. Most of the techniques discussed in the mlatark section require the security
mechanism to be tightly coupled with the policies. In thddeing section, we can show that it
is possible to maintain a generic PDP separated from theigepalicies and able to take access
decisions based on the evaluation of encrypted policiethidrway, the policy confidentiality can
be guaranteed against a curious provider and the funcitipidithe access control mechanism
is not restricted.

4.1. System Model

Before presenting the detail of the scheme usd8SFPOONRgac it is necessary to discuss
the system model. In this section, we identify the followsygtem entities:

e Admin User: This type of user is responsible for the administration digies stored in
6



the outsourced environment. An Admin User can deploy nevcigsl or updat&lelete
already deployed policies.

e Requester: A Requester is a user that requests an access (e.g., resdonsearch) over
the data residing in the outsourced environment. Beforeticess is permitted, policies
deployed in the outsourced environment are evaluated.

e Service Provider (SP):The SP is responsible for managing the outsourced compntati
environment, where thESPOONRrgac cOmponents are deployed and to store the data,
and policies. It is assumed the SP is honest—but—curiou@sﬂoes), i.e., it allows the
components to follow the protocol to perform the requiretioas but curious to deduce
information about the exchanged and stored policies.

e Trusted Key Management Authority (TKMA): The TKMA is fully trusted and respon-
sible for generating and revoking the keys. For each typeittfaised users (including an
Admin User and a Requester), the TKMA generates two key setsecurely transmits
the client key set to the user and the server key set to the didtration Point. The Ad-
ministration Point inserts the server side key set inkbg Store. The TKMA is deployed
on the trusted environment. Although requiring a TKMA seenedds with the need of
outsourcing the IT infrastructure, we argue that the TKMAuriees less resources and less
managementféort. Securing the TKMA is much easier since a very limited amntoof
data needs to be protected and the TKMA can be kéjine most of the time.

It should be clarified that in our settings an Admin User is intérested in protecting the
confidentiality of policies from other Admin Users and Resfees. Here, the main goal is to
preserve the confidentiality of data and policies from the SP

4.2. Representation of RBAC Poligleequests

In this section, we provide details about how to represelitips and requests used in our
approach. An RBAC policy contains a role assignment pokcgermission policy and a role
hierarchy graph. In the following, we discuss each of theiguie2 illustrates how we represent
role assignment policies BSPOONRgrgac The meaning of role assignment policy is as follows:
if contextual condition CONDITION, is true thenUS ERcan be active in any role(s) out of
role set{Ry, Ry, ..., Ry}. Figurel3 illustrates how we represent permission assighpaicies
in ESPOONRgeac The meaning of permission assignment policy is as folloivsontextual
condition, CONDITION, is true then roleR can execute any permission(s) out of permission set
{(A1, T1), (A2, T2), ..., (An, i)}

The PDP evaluates contextual conditions of both role assggih and permission assignment
policies before granting the access. In order to evaluatetegtual condition, the PDP requires
contextual information. The contextual information captuthe context in which a Requester
makes access or role activation requests. The PIP colledtseads required contextual informa-
tion to the PDP. To represent contextual conditions, we lusérée structure described i [5] for
CP-ABE policies. This tree structure allows an Admin Useexpress contextual conditions as
conjunctions and disjunctions of equalities and ineqieslitinternal nodes of the tree structure
are AND, OR or threshold gates (e.g., 2 of 3) and leaf nodesates of condition predicates
either string or numerical. In the tree structure, a striagnparison is represented by a single
leaf node. However, the tree structure usedthg of bitsrepresentation to support comparisons
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between numerical values that could express time, datatitog age, or any numerical identi-
fier. For instance, let us consider a contextual conditiatirgg that the Requester location should
be Cardiologyward and that the access time should be between 9:00 and 17:0Figtge[4
illustrates the tree structure representing this consxdandition, where access time (AT) is in
a 5-hit representation (#5).

A Requester can make a role activation reque&3T or an access requeREQ In ACT =
(i,R), a Requester includes her identitglong with roleR to be activated. After a Requester
is active inR, she can execute permissions assigne&.toFor executing any permission, a
Requester send®EQ= (R, A, T) that includeRR she is active in, actioA to be taken over target
T. A Requester send&CT or REQrequests to the PEP.

The PEP receives and forwards requeS@ST or REQto the PDP. The PDP fetches poli-
cies corresponding to requests from the Policy Store. ThE Riay require contextual in-
formation in order to evaluate contextual conditions tongraCT or REQ Let us consider
CONDITION illustrated in Figuré ¥ requiring location of Requester audess time. We as-
sume the Requester makes the request when sheQarifiologyward and access time (AT)
is 10:00 hrs. The PIP collects and then transforms this gtudé information as follows:
Location= Cardiologyward, AT : O # # %, AT L1 sk, AT : s % 0% %, AT o # % x1x,

AT : =% x % 0, where AT is in a 5-bit representation (same as it iIC@NDITION). After per-
forming transformation, the PIP sends contextual inforomato the PDP. The PDP receives
contextual information and then evalua@®NDITION by first matching attributes in contex-
tual information against leaf-nodes in tA®NDITION tree and then evaluating internal nodes
according to AND and OR gates.

The ESPOONRgacarchitecture supports role inheritance. In role inhedé&ra derived role
can execute all permissions from its base role. Before dgiyEQ the PDP may need to check
if base role of one iIRREQcan execute requested permissions. In order to find basg &
store a role hierarchy graph on the SPEIBPOONRgac the PDP traverses in the role hierarchy
graph to find base roles. Figurk 5 illustrates how we reptesesie hierarchy graph. In Figure
[B, each line represents a role that may extend a set of roldthese inheritance rules may
form a role hierarchy graph. For instance, consider an el@frmgm healthcare domain where a
Cardiologist Assistanextenddntern, aDoctor extenddnternand finally aCardiologistextends
both Cardiologist Assistanand Doctor. If we combine all these inheritance rules then it can
form a graph as shown in Figure 6.

In this representation, leaf-nodes@ONDITION, R, A, T of bothACT andREQ roles in the
role hierarchy graph, and attributes in contextual infdfamaare in cleartext. Therefore, such
information is easily accessible in the outsourced enviremt and may leak information about
the data that policies protect. In the following, we show how protect such representation
while allowing the PDP to evaluate policies against recuiastl contextual information.

5. Solution Details

ESPOONRgacaims at enforcing policies in outsourced environments. ma@ idea of our
approach is to use an encryption scheme for preserving emntiidity of policies while allowing
the PDP to perform the correct evaluation.BBPOONRrgac We can notice that the operation
performed by the PDP for evaluating policies (againstlaitgs in the request and contextual
information) is similar to the search operation executed @tatabase. In particular, in our case
the policy is a query; while, attributes in the requeSET or REQ and contextual information
represent the data.
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ForESPOONRgac as a starting point we consider the multiuser Searchaltie Bxacryption
(SDE) scheme proposed by Doatal. in [13]. The SDE scheme allows an untrusted server to
perform searches over encrypted data without revealingdcserver information on both the
data and elements used in the request. The advantage ofédttipdnis that it fers multi-user
access without requiring key sharing between users. Eaghtiruthe system has a unique set of
keys. The data encrypted by one user can be decrypted by l@yaithorised user. However,
the SDE implementation in [13] is only able to perform keyd/oomparison based on equalities.
One of the major extensions of our implementation is that kgeadle to support the evaluation
of contextual conditions containing complex boolean eggi@ns such as non-conjunctive and
range queries in multi-user settings.

In general, we distinguish four phasesESPOONRrgac for managing life cycle of poli-
cies in outsourced environments. These phases inahitildisation, policy deployment, policy
evaluation anduser revocationlIn the following, we provide details of each phase.

5.1. Initialisation Phase

In ESPOONRgac €ach user (including an Admin User and a Requester) oldaitient side
key from the TKMA while the SP (as a proxy server) receivesraeseside key set corresponding
to the user. The client side key set serves as a private keydser. The SP stores all key sets in
the Key Store. The Key Store is accessible to the Administi&Roint, the PEP and the PDP.

5.2. Policy Deployment Phase

For deploying (or updating existing) policies, an Admin Uperforms a first round of en-
cryption using her client side key set. An Admin User encsygiements of policies. In role
assignment policies, an Admin User encrypts all roles assido a user. In permission assign-
ment policies, an Admin User encrypts both action and tgrgets of each permission and also
encrypts the role to which these permissions are assignsedveAknow that a tree represents
condition conditions of both role assignment and permississignment policies (as shown in
Figure[d), an Admin User encrypts each leaf node of the treiiewnon-leaf (internal) nodes
representing AND, OR or threshold gates are in cleartexd rivie hierarchy graph (as shown in
Figurel), an Admin User encrypts each of its node reprasgatiole. After completing the first
round of encryption on policies, an Admin User sends cliemtygpted policies to the Adminis-
tration Point on the SP. These client encrypted policiepavtected but cannot be enforced as
these are not in common format. To convert client encryptdidips to common format, the Ad-
ministration Point performs a second round of encryptiangiserver side key set corresponding
to the Admin User. The second round of encryption serves asxy pe-encryption. In the sec-
ond round of encryption, the Administration Point encrygdt®lements that are encrypted in the
first round of encryption. Finally, the Administration Pbstores server encrypted policies in
the Policy Store.

5.3. Policy Evaluation Phase

A Requester can make a role activation requsST. Before sendindACT to the SP, a
Requester generates a client trapdoor of the rokGi. A Requester generates client trapdoor
using her client side key set. The trapdoor representaties dot leak information on elements
of requests. Similarly, a Requester can make an accessst&jt@after getting active in a role.
A Requester generates a client trapdoor for each elemdRE®including the role, the action
and the target. A Requester sends requests containing géeerated trapdoors to the PEP on
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the SP. The PEP performs another round of trapdoor geneffati@onverting all trapdoors into
a common format. After performing a second round of trapd@oreration on the server side, the
PEP forwards server generated trapdoors to the PDP. The &Btie$ policies from the Policy
Store and then performs encrypted matching of trapdoorsgoest against encrypted elements
in policies. The encrypted matching in outsourced envirents does not leak information about
elements of requests or policies.

The PDP may require contextual information in order to eatduhe contextual conditions
of policies. The PIP collects contextual information andeyates client trapdoors for elements
of contextual information using her client side key set. Ptié sends client generated trapdoors
of contextual information to the PDP. The PDP performs agotbund of trapdoor generation
using server side key set corresponding to the PIP. Fintiey,PDP evaluates the contextual
condition by matching trapdoors of contextual informatamainst encrypted leaf nodes of the
tree representing the contextual condition (as shown inreld). After evaluating leaf nodes,
the PDP evaluates non-leaf nodes of the tree based on AND n@fheeshold gates. The PDP
grants the access request if (the root node of) the treeatealtotrue.

The PDP may need to find base roles corresponding to the rdRE@ considering the
fact that a derived role has all permissions from its base dol order to find base role, the PDP
fetches the role hierarchy graph from the Policy Store. TDE Bhatches trapdoor of role REQ
against server encrypted roles in the role hierarchy graphile deploying the role hierarchy
graph, we store also server generated trapdoor of the rohg alith each server encrypted of
role because the PDP needs a trapdoor of each base role ga#manatch this trapdoor against
roles in the Permission Repository. After traversing inrtile hierarchy graph, the PDP extracts
server generated trapdoors of all base roles of one thathesigith trapdoor of role IREQ
The PDP verifies if any base role has requested permissioss, the PDP grants the request.

5.4. User Revocation Phase

In ESPOONRsaG Users do not share any keys and a compromised user can Bedevibh-
out requiring re-encryption of policies or re-distributiof keys. For revoking a compromised
user, the Administration Point removes the server side keycorresponding to the user) from
the Key Store.

Algorithm 1 Init

Input: A security parameterl
Output: The public parametengaramand the master secret kaysk

1: Generate primes p and q of siZesuich thag | p— 1

: Create a generatgrsuch thats is the unique ordeq subgroup ofZ;,
i Choose arandome Zg

h« g

. Choose a collision-resistant hash functtén

: Choose a pseudorandom functibn

. Choose a random keyfor f

. param« (G,g,q,h,H, f)

> mske (%, 9)

10: return (parammsRk

6. Algorithmic Details

In this section, we provide details of algorithms used inhealtase for managing life cycle
of policies. All these algorithms constitute the proposetema.
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6.1. Initialisation Phase

In this phase, the system is initialised and then the TKMAegates required keying ma-
terial for entities INESPOONMRrsac During the system initlisation, the TKMA takes a security
parametek and outputs the public parametgraramsand the master key satskby running
Init illustrated in AlgorithnL. The detail diit is as follows: the TKMA generates two prime
numbersp andq of sizek such thaig dividesp — 1 (Line[). Then, it creates a cyclic gro@p
with a generatog such thatG is the unique ordeq subgroup ofZ;, (Line[d). Next, it randomly
choosesx € Zj (Line [3) and computér asg* (Line[d). Next, it chooses a collision-resistant
hash functiorH (Line[d), a pseudorandom functidn(Line[d) and a random kegfor f (Line
[7). Finally, it publicises the public parametggarams= (G, g, q, h, H, f) (Line[8) and keeps
securely the master secret keysk= (x, s) (Line[d).

Algorithm 2 KeyGen

Input:  The master secret keysk the user identity and the public parametepgrams
Output: The client side key sé{,;, and server side key skt .

. Choose arandom; € Z4
D X2 — X— X1

: K“i « (_Xl'las)

DKy (0, %2)

Dreturn (K, Kg)

GORWN -

For each user (including an Admin User and a Requester), kAT generates the keying
material. For generating the keying material, the TKMA takige master secret kegysk the
user identityi and the public parameteparamsand outputs two key sets: the client side key set
K, and the server side key s&t by runningKeyGeniillustrated in Algorithn{2. InKeyGen,
TKMA randomly choosesq; € Zg (Line[ll) and computesiz = x - xi1 (Line[2). It creates the
client side key seK, = (X1, 5) (Line[3) and the server side key 3€f = (i, xi2) (Line[d).

After running Algorithm2, the TKMA sends the client side kegtK, and the server side
key setKq to useri and the Administration Point on the SP, respectively. Thentkide key set
K, serves as a private key for userThe Administration Point of the SP inseKg in the Key
Store by updating it as followS = KSUKg. The Key Store is initialised a&S « ¢. Figure
[Aillustrates key distribution where Admin UsAr RequesteR and PIPP receiveK,,, K, and
Ky, respectively. The TKMA sends the corresponding server k&y setXs,, Ks, andKg, to
the Administration Point on the SP. The Administration RPaiserts server side key sets into the
Key Store. Please note that only the Administration Poh#,RDP and the PEP are authorised
to access the Key Store.

Algorithm 3 ClientEnc

Input: Elemente, the client side key sé{,; corresponding to Admin Usérand the public parameteparams
Output: The client encrypted elemeqt(e).

. Choose arandom, € Zg
D oe — fs(€)

c e retoe

cae gy

. C«—C

83 « H(h'e)

1 C(e) « (€1, 2. Ca)
:return c'(e)

~NOURAWN P
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Algorithm 4 ServerReEnc

Input: The client encrypted elemeqt(e) and the server side key g€, corresponding to Admin User
Output: The server encrypted elemeage).

D Cp e (él)XiZ.(":z — ﬁ:i1+xi2 — (gre+rre)x — hretoe
1 Cp = &3 = H(h'®)

S c(e) =(c. )

: return c(e)

ArWNE

6.2. Policy Deployment Phase

In the policy deployment phase, an Admin User defines andogiedolicies. In general, a
policy can be deployed after performing two rounds of entioyys. An Admin User performs a
first round of encryption while the Administration Point dretSP performs a second round of
encryption. For performing a first round of encryption, am#id User runlientEnc illustrated
in Algorithm[3. ClientEnc takes as input (policy) elemest the client side key sef,, corre-
sponding to Admin User and the public parametegaramsand outputs the client encrypted
elementc;(e). In ClientEnc, an Admin User randomly choosese Z; (Line[D), computesre
as fs(e) (Line[2), and then computes, ¢, andc; asg™*’e (Line[@), ¢* (Lined) andH(h's)
(Line[3), respectivelycy, ¢, andc; constitutec(e) (Line[8). An Admin User transmits to the
Administration Point the client encrypted elements of dqychs shown in Figurgl 8.

The Administration Point retrieves the server side key setesponding to the Admin User
and performs a second round of encryption by runi8egverReEncillustrated in Algorithn%.
ServerReEnctakes as input the client encrypted elemeiife) and the server side key skt
corresponding to Admin Userand outputs the server encrypted eleneal. The Administra-
tion Point calculates, andc;, as €;)2.6; = €™ = (g'«*7¢)* = h'e**= (Line[l]) andcz = H(h')
(Line[2), respectively. Botle; andc, form c(e) (Line[3). The Administration Point stores the
server encrypted policies in the Policy Store as shown inrfel@.

In the following, we describe how to deployfltirent (parts of) policies including role as-
signment, permission assignment, contextual conditimasrale hierarchy graph. For the de-
ployment of each (part of) policy, we follow general stratag already described in this section
and also illustrated in Figufé 8.

Algorithm 5 RoleAssignment:ClientSide

Input: List of rolesL to be assigned to Requesiethe client side key sé{,; corresponding to Admin Userand the public parameters
params
Output: The client encrypted role assignment ligf .

1 LCi — ¢

2: for each role in list L do

3. ¢(r) « callClientEnc (r, K, param$ {see Algorithn{B
4: Le; < Lguc(n)

5: end for

6: return (j, L)

Deployment of Role Assignment Policies: In order to assign roles to a Requester, an Admin
User can deploy role assignment policies. For this purpaseéddmin User run&koleAssign-
ment:ClientSide illustrated in Algorithn{®. This algorithm takes as inpuist bf rolesL to be
assigned to Requestgrthe client side key sé€,, corresponding to Admin Usérmand the public
parameterparamsand outputs the client encrypted role assignmentlistFirst, it creates and
then initialises new listc, (Line[d). For each role ii. (Line[2), it generates client encrypted
role by callingClientEnc illustrated in Algorithn{38 (LindB) and then it updates, by adding

12



Algorithm 6 RoleAssignment:ServerSide

Input: The client encrypted role assignment lisj for Requestej and identityi of Admin User.
Output: The server encrypted role assignment list

 Kg « KSJi] {retrieve the server side key corresponding to Admin Wser
Ils«—¢

. for each client encrypted rolg(r) in list Lc; do

c(r) « call ServerReEnc(c; (r), Ky ) {see Algorithni}

Ls « Ls uc(r)

. end for

> return (j, Ls)

client encrypted role (LinE]4). An Admin User sends the dliemcrypted role assignment list
to the Administration Point. During the second round of gption, the Administration Point
runsRoleAssignment:ServerSidellustrated in Algorithn{®. This algorithm takes as inpuéth
client encrypted role assignment lis¢, for Requestej and identityi of Admin User and ouputs
the server encrypted role assignment list While runningRoleAssignment:ServerSidethe
Administration Point first retrieves the server side kaycorresponding to Admin Useér(Line
[@). It creates and initialises new lisg (Line[2). For each role ihg, (Line[3), it generates server
encrypted role by callingerverReEncillustrated in Algorithn{# (Lind¥) and updatés; by
adding the server encrypted role (L[de 5).

Algorithm 7 PermissionAssignment:ClientSide

Input: List of permissiond. to be assigned to role the client side key sé{,; corresponding to Admin Userand the public parameters
params
Output: The client encrypted permission assignmentligtassigned to the client generated rolér).

. ¢/ (r) « call ClientEnc (r, Ky, param$

. LCi — ¢

. for each permissioragtion targef) in L do

¢/ (actior) « call ClientEnc (action Ky, paramg
C'(targe) « call ClientEnc (target K, paramg
Le; « L U (¢ (action), ¢ (targed)

. end for

return (c(r), Le;)

Algorithm 8 PermissionAssignment:ServerSide

Input:  The client encrypted permission assignmentligtfor client generated role’(r) and identityi of Admin User.
Output: The server encrypted permission assignmentksand the server generated rafe).

1 Ks « KS[i] {retrieve the server side key corresponding to Admin Wser
2: c(r) « call ServerReEnc(c (r), Ks)

Ils—¢

. for each client encrypted permissias (@ction), ¢’ (targed) in list Lc; do
c(action) « call ServerReEnc(c; (action), Ky )

c(targef) « call ServerReEnc(c/ (targe), K )

Ls « Ls U (c(action), c(target)

. end for

> return (c(r), Ls)

Deployment of Permission Assignment Policies: An Admin User can assign permissions to
a role. In order to deploy policies regarding permissiorsgasnent to roles, an Admin User
runs Algorithm[¥. This algorithm takes as input a list of peasionsL to be assigned to role
r, the client side key s, corresponding to Admin Usérand the public parameteparams
and outputs the client encrypted permission assignmenidisassigned to client generated role
13



c'(r). First, it generates client encrypted rajgr) by calling ClientEnc illustrated in Algorithm

B (Line[D). Next, it creates and initialises new lig§ (Line[d). For each permission in(Line
B), it generates the client encrypted actigjaction) (Line[d) and the client encrypted target
¢/ (target) (Line[B) and updatesc, by adding the client encrypted permission (L[de 6). An
Admin User sends the client encrypted permission list aleitlg the client encrypted role to the
Administration Point. The Administration Point runs arettmound of encryption by running
Algorithm[8. This algorithm takes as input the client en¢egbpermission assignment liisg,

for client generated role;(r) and identityi of Admin User and outputs the server encrypted
permission assignment list and the server generated ralg). First, it retrieves from the Key
Store the server side key st corresponding to Admin User(Line[d). Next, it generates
the server encrypted role by callir®@erverReEncillustrated in Algorithm# (Lind_R). Then,
it creates and initialises new lists (Line[d). For each client encrypted role i, (Line [4),

it generates the server encrypted action (lihe 5) and theesencrypted target (Ling 6) and
updated_s by adding the server encryption permission (LIhe 7).

Algorithm 9 ContextualConditionDeployment:ClientSide

Input:  The contextual conditiof, the client side key sé€,;, corresponding to Admin Usérand the public parameteparams
Output: The client encrypted contextual conditidg, .

: TCi «T

: for each leaf nodein Tc; do
¢/ (e) « call ClientEnc (r, Ky, paramg
replacee of T¢; with ¢; (€)

end for

return Tg;

IZRSUERC Y

Algorithm 10 ContextualConditionDeployment:ServerSide

Input:  The client encrypted contextual conditidg, and identity of Admin User.
Output: The server encrypted contextual conditibs

1: Kg < KSJi] {retrieve the server side key corresponding to Admin Wser
2: Ts « Tg

3. for each client encrypted leaf nodg(e) in Ts do

4:  c(e) < call ServerReEnc(c(€), Ky)

5: replacec’ (e) of Ts with c(e)

6: end for

7: return Ts

Deployment of Contextual Conditions: The contextual condition (part of role assignment
and permission assignment policies) can be deployed in tegss In the first step, an Admin
User performs a first round of encryption by running Algamitf@. This algorithm takes as
input the contextual conditioif, the client side key se,, corresponding to Admin Usear
and the public parametefgaramsand outputs the client encrypted contextual condifien
First, it copiesT to T¢, (Line[d). For each leaf node i, (Line ), it generates the client
encrypted element by callinglientEnc illustrated in AlgorithmB (LindB) and then updates
Tc, by replacing elemeng with the client encrypted element(e) (Lined). An Admin User
sends the client encrypted contextual condition to the Adstriation Point. In the second step,
the Administration Point performs another round of endgpby running AlgorithnID. This
algorithm takes as input the client encrypted contextuatiitmn T¢, and identity of Admin User
i and outputs the server encrypted contextual condifignFirst, it retrieves from the Key Store
the server side kel corresponding to Admin User(Line[]). Next, it copiesl¢, to Ts (Line

14



). For each each client encrypted leaf nod& in(Line[3), it generates the server encrypted
element by callingserverReEncillustrated in Algorithn{# (Liné#). Then, it replaces théecit
encrypted elemert'(e) of Ts with the server encrypted elemeste) (Line[H).

Algorithm 11 RoleHierarchyDeployment:ClientSide

Input: The role hierarchy grapB, the client side key sé{; corresponding to Admin Usérand the public parameteparams
Output: The client generated role hierarchy gre@d .

1Gg <G

. for each node in G¢; do
¢/ (r) « call ClientEnc (r, K;, paramg
td; (r) « call ClientTD (r, K, , param$ {see AlgorithnIB
replacer of Gg; with (¢ (r), td(r))

end for

retun  Gg;

Noghwhe

Algorithm 12 RoleHierarchyDeployment:ServerSide

Input: The client generated role hierarchy grap and identity of Admin User.
Output: The server generated role hierarchy gr&gh

Ky « KSJi] {retrieve the server side key corresponding to Admin Wser
1 Gs « GC‘
. for each client generated nodg (). td’ (r)) in Gs do
c(r) « call ServerReEnc(c(r), Kg)
td(r) « call ServerTD (td; (r), Ky ) {see AlgorithnT}
replace € (r), td’(r)) of Gs with (c(r), td(r))
end for
return Gs

NGO RO E

Deployment of Role Hierarchy Graph: We know that a derived role inherits all permissions
from its base role. In case if requested permissions aressajraed to the Requester’s role, the
PDP may need to traverse in the role hierarchy graph to find halss corresponding to the
Requester’s role and then PDP verifies if any base role céihrequested permissions. For this
purpose, the PDP needs a trapdoor of each base role so thatibatch this trapdoor against
roles in the Permission Repository. Therefore, a role hibsagraph stores a role trapdoor
along with each encrypted role. The deployment of role hédra graph takes place in two
steps. In the first step, an Admin User runs Algorithoh 11. Tigorithm takes as input the
role hierarchy grapf®, the client side key sé{,, corresponding to Admin Useérand the public
parameterparamsand outputs the client generated role hierarchy gagh First, it copiesG
to Gg, (Line[d)). For each nodein G, (Line[d), it generates the client encrypted role by calling
ClientEnc illustrated in AlgorithniB (LinéB) and the client trapdoor talling ClientTD (Line
[) illustrated in AlgorithnIB that is explained later ingtsection. Next, it replacesof G¢,
with the client encrypted role and the client generateddoap (Line[$). An Admin User sends
the client generated role hierarchy graph to the AdmirtistnaPoint. In the second step, the
Administration Point runs Algorithiai12. This algorithm &kas input the client generated role
hierarchy graplc, and identity of Admin User and outputs the server generated role hierarchy
graphGs. First, it retrieves from the Key Store the server side Kgycorresponding to Admin
Useri (Line[d). Next, it copie$c, to Gs (Line[d). For each client generated node (Lhe 3), it
generates the server encrypted role by caltegverReEncillustrated in Algorithni (Lind 1)
and the server trapdoor by calli@grverTD (Line[5) illustrated in Algorithni_T# that is explained
later in this section and then updates by replacing the client generated node with the server
generated node (Lirié 6).
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Algorithm 13 ClientTD

Input:  Elemente, the client side key sé{,; corresponding to usérand the public parametemarams
Output: The client generated trapdotat’ (€).

. Choose arandom, € Zy

D oe — fs(€)

Tt glegre

: t2 — hfeg’xwlfegxii‘fe - gXiZI’ggX‘ltfe
s tdf(e) « (t1,12)

. return td'(e)

OUORWN -

Algorithm 14 ServerTD

Input: The client generated trapdotak’ (€) and the server side key g€t corresponding to usér
Output: The server generated trapddd(e).

1: td(e) « 2.1, = g¥e
2: return td(e)

6.3. Policy Evaluation Phase

The policy evaluation phase is executed when a Requestezsreakequest eithekCT or
REQ In this phase, a Requester sends client generated trap@aging Algorithn{IB) of a
request to the PEP. The PEP converts client generated tepithbo server generated trapdoors
(using AlgorithmI#) and sends them to the PDP. The PDP mafiwer encrypted trapdoors
of the request with server encrypted elements of the polising Algorithm[IF). Optionally,
the PDP may require contextual information in order to eaedicontextual conditions. The PIP
sends client generated trapdoors of contextual informatadhe PDP. The PDP converts client
generated trapdoors into server generated trapdoors andetfaluates contextual conditions
based on contextual information. Finally, the PDP retuitieetrue or falseas shown in Figure
[@. In the following, we describe how we generate trapdoodsparform the match.

For calculating client generated trapdoors of a requestdotextual information), a Re-
quester (or the PIP) rurGlientTD illustrated in Algorithn{IB.ClientTD takes as input each
element of the request, the client side key $&f corresponding to useérand the public param-
etersparamsand outputs the client generated trapduti(e). First, it choose randoml. € Zj
(Line[d). Next, it calculatese as fs(e) (Line[2). Then it calculate andt, asg g’ (Line
B) andh'egXtlegi1oe = g*elegXace (Line[d), respectively. Bothy andt, form td*(e) (Line [S).

A Requester sends client generated trapdoors of the reguibst PEP. The PEP receives client
generated trapdoors and ruBerverTD illustrated in Algorithn_T# for calculating server gener-
ated trapdoorsServerTD takes as input the client generated trapdadpfe) and the server side
key setKy corresponding to usérand outputs the server generated trapdd@@). It calculates
td(e) ast;.t, = g*’= (Line[).

In order to match a server encrypted element of a policy witlerver generated trapdoor
of a request, the PDP ruidatch illustrated in Algorithn{Ib.Match takes as input the server
encrypted elemert(e) = (cy, C;) and the server generated trapdudie) = T and returns either

true or false It checks the condition, 2 H(c..T~Y) (Line[). If the condition holds, it returns
true (Line[2) indicating that the match is successful. Otheryits@turnsfalse(Line[d).

In the following, we describe how to evaluate (parts of) giel including role assignment,
permission assignment, contextual conditions and roleatghy graph. For the evaluation of
each (part of) policy, we follow general strategy as alreddgcribed in this section and also
illustrated in Figuré®.
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Algorithm 15 Match

Input: The server encrypted elemesfe) = (c1, ¢2) and the server generated trapdui(e) = T.
Output: true or false

10 if ¢ 2 H(c. T™Y) then
2: return true

3: else

4: return false

5: endif

Algorithm 16 SearchRole

Input:  The client generated trapdoor of raté (r) and the server encrypted role assignment list (or list of active roles in sggsidor
Requester
Output: true or false

1. Kg « KSJi] {retrieve the server side key corresponding to Requéster
2: td(r) « call ServerTD (td; (r), Ks)

3: for each server encrypted ratgr) in Ls do

4 match« call Match (c(r), td(r)) {see Algorithni L

5: if matchZ truethen

6 return true

7

9: return false

Searching aRole: A Requester can make a role activation reqéé3t and sends it to the SP.
In order to granACT, the SP runSearchRoleillustrated in AlgorithniI6. This algorithm takes
as input the client generated trapdoor of ralgr) and the server encrypted role assignment list
Ls for Requestet. First, it retrieves from the Key Store the server side Kgycorresponding to
Requester (Line[d). Next, it calculates the server generated traptii(o) by calling Algorithm
[I4 (Line[2). For each server encrypted rafe) in Ls (Line[3), it performs matching against
td(r) by calling Algorithm[I® (Lind#). If any match is successfuine[d), it returngtrue (Line
[6), meaning thaACT is granted. Otherwise, it returfislse(Line[d).

After ACT is granted, the PEP updates Session by adding in the ActilesRepository the
server generated trapdoor of role. Once a Requester igaot®& role, she can make an access
requesREQ Before grantindREQ the SP checks if the Requester is already in the roREQ
For this purpose, the SP runs Algorithini 16, whegeshows a list of active roles in the session.
Furthermore, the PDP also runs Algorithni 16 for searchimgrttle inREQin the Permission
Repository with a slight modification of ignoring the sert&pdoor generation (in Lird 2) as it
is already generated when the roleREQis searched in the session.

Searching a Permission: A Requester can serREQfor executing certain permissions. The
PEP on the SP checks if the Requester is active in the roledteti inREQand then the searches
that role in the Permission Repository by running Algoriffigh After a role is matched in the
Permission Repository, the PEP searches the permissRE@by running AlgorithnIV. This
algorithm takes as input the client generated trapdoor whission {d"(action), td(targef) and
the server encrypted permission assignmentidbr Requesterand returns eithdrue or false
First, it retrieves from the Key Store from the Key Store thever side keyKg corresponding to
Requester (Line[). Next, it calculates server generated trapdoob®tf action (Ling€R) and tar-
get (Line3) by calling Algorithni 14. For each server encegbpermissiondg(action), c(target)
in Ls (Line[d), it matches the server encrypted action with theesegenerated action (Lirié 5)
and the server encrypted target with the server generated(tane[@), respectively, by calling
Algorithm[I8. If both matches are successful (Lie 7) for aeymission ¢(action), c(target)
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Algorithm 17 SearchPermission

Input:  The client generated trapdoor of permissitdf (action), td'(targef) and the server encrypted permission assignmenitdigor
Requester
Output: trueor false

1 Ks « KS[i] {retrieve the server side key corresponding to Requéster
2: td(action) « call ServerTD (td’ (action), K )

3: td(targe) < call ServerTD (td; (targed), Ks)

4: for each server encrypted permissiataction), c(targed) in Ls do
matchytion < call Match (c(action), td(action))

matCharget < call Match (c(targe?), td(targef)

if matchytion 2 true andmatcharget 2 truethen
return true

end if

10: end for

11: return false

in Ls, it returnstrue (Line[8). Otherwise, it returnfalse(Line[11).

Algorithm 18 ContextualConditionRequest

Input: List of attributes contextual attributésthe client side key sédy; corresponding to Requesteand the public parameteparams
Output: The client generated list of trapdoors of contextual attributgs

Ll «¢

2: for each attributein L do

3. td'(e) « call ClientTD (r, K, param$
D Lg — Lg utdi(e)

5: end for

6: return Tc,

Generating Contextual Attributes: The PIP rungontextualAttributesRequestillustrated
in Algorithm[I8 to calculate client generated trapdoors afitextual information.Contextu-
alAttributesRequest takes as input a list of contextual attributesthe client side key sef,
corresponding to Requestieaind the public parameteparamsand outputs the client generated
list of trapdoors of contextual attributés,. First, it creates and initialises new lisg, (Line
). For each attributein L (Line[), it calculates the client generated trapdub(e) by calling
Algorithm[13 (Line[3) and addsl/(e) in Lc, (Line[).

Evaluating Contextual Conditions: For evaluating any contextual condition, the PDP runs
ContextualConditionEvaluation illustrated in Algorithn{2D. This algorithm takes as inpoét
client generated list of trapdoors of contextual attrisutg,, the server encrypted contextual
conditionTs and identity of Requestérand returns eitherue or false First, it retrieves from
the Key Store the server side kg corresponding to RequestefLine[). Next, it creates and
initialises a new list_s (Line[2). For each client generated trapdad(e) in L¢, (Line[d), it
calculates the server generated trapdd@e) by calling Algorithm[I4 (Lind %) and adds(e) in
Ls (Line[ ). Next, it copiesls to TREE(Line[7) and adds decision field to each nodd REE
(Line[8). For each node in TREE(Line[9), it initialisesn.decisionasnull (Line[I0). For each
leaf noden in TREE(Line[TI2), it checks if any server generated trapdiide) in Ls (Line[I3)
matches with it by calling Algorithri 15 (Line_14). Next, it@uates non-leaf nodes TREE
by running AlgorithmI® (Liné_20). Finally, it returns eithue or false depending upon the
evaluation ofTREE(Line[2]).

EvaluateTree evaluates a tree containing AND and OR gates. It takes a$ inptinoden
and treeT and returns eithetrue or false First, it checks if the decision far is already made
(Line[D). If so, it returns the decision (Lirid 2). For eachldtd of n in tree T (Line [d), it
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Algorithm 19 EvaluateTree

Input: Noden and treeT.
Output: true or false

1: if n.decision# null then

2 return n.decision

3: endif

4: for each childc of nin treeT do

5: call EvaluateTree(c, T) {recursive call
6: end for

7:t<0

8 me0

9: for each childc of nin treeT do

10 tet+1

11: if c.decisionZ true then
12: mem+1

13: end if

14: end for

15: if (n.gatei ANDandm 2 t) or (n.gatez? ORandm > 1) then
16: n.decision« true

17: else

18: n.decision— false

19: end if

20: return n.decision

Algorithm 20 ContextualConditionEvaluation

Input: The client generated list of trapdoors of contextual attriblitgs the server encrypted contextual conditibg and identity of
Requester.
Output: trueor false

1: Kg < KSJi] {retrieve the server side key corresponding to Requéster
2. Ls «— ¢

3: for each client generated trapdddf (€) in L¢; do
4: td(e) « call ServerTD (td'(e), Kg)

5: Ls « Ls utd:(e)

6: end for

7: TREE«— Tg

8: Add decision field to each node TREE

9: for each nod@ in TREEdo

10: n.decision— null

11: end for

12: for each leaf node in TREEdo

13:  for each server generated trapdedf(e) in Ls do

14: n.decision« call Match (n.c(e), td(e))
15: if n.decision? true then

16: return break

17: end if

18: end for

19: end for

20: call EvaluateTree (T REEroot, TREB {see Algorithn.ID
21: return TREEroot.decision
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recursively callEvaluateTree (Line[5). Next, it creates and initialis¢$Line[d) andm (Line[8)
indicating total children oh and a count of matched children, respectively. For eacld chilf
nin treeT (Line[@), it counts total children (Line_10) and matched dteéh by checking made
decisions (Liné_12). Next, it checks if non-leaf node is ANBall children are matched or
non-leaf node is OR and at least one child is matched (CihelL5), it is set agrue (Line[18)
andfalse(Line[I8) otherwise.

Algorithm 21 SearchRoleHierarchyGraph

Input: The server generated trapdoor of ralér) and the server generated role hierarchy gi@gh
Output: trueor false

1: for each server encrypted rat¢r) in Gs do
2: match« call Match (c(r), td(r))

3 if matchZ truethen
4: return true

5 end if

6: end for

7: return false

Searching Rolesin Role Hierarchy Graph: The PDP may need to search base roles of one in
REQsince a derived role inherits all permissions from its ba¢e. rThe PDP runSearchRole-
HierarchyGraph illustrated in AlgorithniZL to find base roles from the endegprole hierarchy
graph. This algorithm takes as input the server generadgdidor of roletd(r) and the server
generated role hierarchy gra@ and returndrue if any base role is found arfdlseotherwise.

For each server encrypted ratf) in Gg (Line[), it checks iftd(r) matches with anyg(r) by
calling Algorithm[I5 (Lind2). If any match is found (Liié 3) returnstrue (Line[d). Otherwise,
it returnsfalse(Line[q).

Algorithm 22 UserRevocation

Input: The user identity.
Output: true orfalse

if exit{KSIi]) = falsethen
return false

cend if

: Ky « KSIi]

: KS « KS\Ky

. return true

ouAWNE

6.4. Revocation Phase

In this phase, the PEP can remove a compromised user fromygtesns In order to remove
a user, the PEP rungserRevocationillustrated in Algorithn{2R. This algorithm takes as input
the user identity and returns eithdrue (indicating that the user has been removed successfully)
or false (indicating that the user does not exist in the syktd-irst, it checks if the given user
exists by checking the Key Store. If no, it retuifatse(Line[d). Otherwise, it retrieves from the
Key Store the server side key $€f corresponding to user(Line[d), removeKs from the Key
Store (Lindb) and returrtsue (Line[B).

7. Security Analysis

In this section, we analyse the security of the policy deplegt phase that includes Role
Assignment (RA) encryption (Algorithn{s 5 afdl 6), Permississignment (PA) encryption
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(Algorithms[1 and’B), Contextual Condition (CC) encrypti@dgorithms[@ and_ID), and Role
Hierarchy (RH) encryption (Algorithn{sT11 afdl12). We themlgse the security of the policy
evaluation phase that include Search Role (SR) (AlgorifiEhand_1E), Search Permission (Al-
gorithmdIB anf17), Contextual Condition Evaluation (Aigons[I8 and20) and Search Role
Hierarchy (Algorithm§ T4, 14 ard P1).

We first define some basic concepts on which we build our sgqunaofs.

7.1. Preliminaries

In general, a scheme is considered secure if no adversaryreak the scheme with prob-
ability significantly greater than random guessing. Theeaslry’s advantage in breaking the
scheme should be a negligible function of the security patam

Definition 1 (Negligible Function) A function f is negligible if for each polynomial)pthere

exists N such that for all integerss N it holds that {n) < ﬁ

We consider a realistic adversary that is computationadlynidled and show that our scheme
is secure against such an adversary. We model the advessamaadomised algorithm that runs
in polynomial time and show that the success probabilityngfsuch adversary is negligible. An
algorithm that is randomised and runs in polynomial timealed a Probabilistic Polynomial
Time (PPT) algorithm.

Our scheme relies on the existence of a pseudorandom fanttidntuitively, the output
a pseudorandom function cannot be distinguished by a tieadidversary from that of a truly
random function. Formally, a pseudorandom function is @efias:

Definition 2 (Pseudorandom Functianh function f: {0, 1}*x{0, 1}* — {0, 1}* is pseudorandom
if for all PPT adversariesA, there exists a negligible function negl such that:

IPr[A%O) = 1] — Pr[ AT = 1] < neg(n)

where k— {0, 1}" is chosen uniformly randomly and F is a function chosen umifp randomly
from the set of function mapping n-bit strings to n-bit sfsn

Our proof relies on the assumption that the Decisiondli®Hellman (DDH) is hard in a
groupG, i.e., it is hard for an adversary to distinguish betweenigrelementg® andg” given

g® andd’.

Definition 3 (DDH Assumption) The DDH problem is hard regarding a grou@ if for all
PPT adversariesA, there exists a negligible function negl such t{A(G, g, 9, g%, ¢, g%) =
1] - PrlA(G, 0,0,9% o, ¢) = 1]| < neglk) whereG is a cyclic group of order g = k) and g
is a generator ofz, ande, B,y € Zq are uniformly randomly chosen.

Encryption algorithms in policy deployment phase are basedlientEnc and Server-
ReEnc functions that is equivalent to encrypting a single keywiordhe SDE schemé__[_ll:%].
Dong et al. ] show that the single keyword encryption scheme is timislishable under
chosen plaintext attackND-CPA). A cryptosystem is considered IND-CPA secure if no PPT
adversary, given an encryption of a message randomly cHom®rtwo plaintext messages cho-
sen by the adversary, can identify the message choice witinegligible probability. Donget
al. [13] prove the following theorem about the single Keyword:Bption (KE) scheme:
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Theorem 1. If the DDH problem is hard relative td@s, then the single keyword encryption
scheme KE is IND-CPA secure against the server S, i.e., FBYRil adversariesA there exists
a negligible function negl such that:

(parammsk « Init(1¥)
(Ky, Ks) « KeyGerfmsk U)
Wo, Wy — ﬂclientEnc(Ku;)(Ks)
b (0,1 1)
c"(wp) = ClientEndxi1, Wp)
b — ﬂcllentEnc(Ku;)(KS, Ci*(Wb))

Sucgy g(k) = Pr|b’ =b

< 1 +neglk)
Proof. See Theorem 1 ih [13].

7.2. Security of Encryption Algorithms in the Policy Depltent Phase

Using the fact that th&E scheme is IND-CPA secure, we show that the four encryption
schemes: RA, PA, CC and RH are also IND-CPA against the seWergive the proof details
for the Roles Assignment encryption schelRi® We will show that the following theorem holds:

Theorem 2. If the single keyword encryption KE scheme is IND-CPA seagainst the server,
then the RA encryption scheme RA is also IND-CPA, i.e., f&?RI adversariesA, there exists
a negligible function negl such that S gl;\%(k) < % + neglKk).

Proof. We prove the theorem by showing that breakind®Aencryption reduces to breaking
the KE encryption. We define the following game in which the adversé challenges the game
with two lists of rolesLy andL; having the same number of rolesWe construct the following
vector containing the encryption of roles from both lisf&} = C(r}), ..., C(rL), C(ri*Y), ..., C(r}).
The success probability of the adversary in distinguistiregencryption of the two lists of roles
is defined as:

Suce(k) = %Pr[A((fO) = 0]+ %Pr[A((f‘) =1] @)

In the following, we show that breaking thi®A scheme reduces to breaking K& game.
In the KE game from ], the adversary challenges the game with twaredswy andw; and
tries to distinguish between their encryptions. Let us mersa PPT adversafi’ who attempts
to challenge the single keyword encryption schafieusing the correspondirigAadversaryA
as a sub-routine The game is the following:

e A’ is given the parameter&(q, g, h, H, f) as input and for each uskis given {, x2).
o A’ passes these parametersAo

e A generates two lists of rolds andL,; having the same number of roleand gives them
to A'.

o A’ chooses « [1,t]. It then usesri), r‘l to challenge the single keyword encryptiiE
game. The adversary gets bagkas the result, where, is the encryption of either, or
_r'l. A’ uses this result to construct a hybrid vectey, (.., c5 1, ¢, cit,..., ¢}) and sends
itto A.
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o A’ outputsty’, the bit output byA.

Ais required to distinguisB® andC~? and the probability ofA’s success in distinguishing
correctly is:

Sucé,(k) = %Pr[A(G(D) = 0]+ %Pr[A(C?(“l)) =1] (3)
Because is randomly chosen, it holds that:

Sucer (K) Ti Suc(t) -
= £PrIACY) = 0]+ Zi(PAC) = 0]
+Pr{AC") = 1]) + 3Pr[ACY) = 1] (4)
= i(%Pr[A(CfO) = 0]+ 3PrIACY) = 1)) + &
Suce(k) + 5

T

Because the success probability @f to break the single keyword encryption scheme is
Sucer (K) < 3 + neglKk), it follows thatS uce(k) < 3 + negl(Kk).

The proof for the other encryption schemes is similar anddok of space we do not show
all the details.

7.3. Security of Algorithms in the Policy Evaluation Phase

We now analyse the security of SR, Search Permission, Cmiatie€ondition Evaluation
and Search Role Hierarchy. These algorithms require theoSBke some client input (i.e.,
trapdoors computed using AlgoritHml13), process it (i&emncrypt it using Algorithri 14), and
test whether it matches some information stored on the sefl®ugh a single operation has
been proved secure, we are interested in what these algaritek to the SP. We follow the
concept of non-adaptive indistinguishability securityraluced for encrypted databases y [9]
and adapted bm3] in a multi-user setting. We show thatrgive non-adaptively generated
histories with the same length and outcome, no PPT advetaargtistinguish the histories based
on what it can observe from the interaction. A history camaall the interactions between
clients and the SP. Non-adaptive history means that thersalyecannot choose sequences of
client inputs based on previous inputs and matching outsome

In the following, we show the details for the SR scheme. I Htheme, a history is defined
as follows:

Definition 4 (SR History) An SR historyH; is an interaction between a SP and all clients that
connect to it, over i role activation requests = (Lg,..., L, ri%, ..., 1), where yrepresents
an identifier of the client making the requests, represents the lists of roles for client and rf‘

represents the request made by the client.

We formalise the information leaked to a SP asazge We define two kinds of traces: the
trace of a single request and the trace of a history. The tthagequest leaks to the SP which
role in Lk matches the request and can be formally definett &@3:= {td ; (role), L., idx}, where
idx is the index of the matched role, if any, lif.

We define the role matching pattefhover a history/H; to be a set of binary matrices (one
for each client) with columns corresponding to encryptddsn the list of the client, and rows
corresponding to requestg[ j, K] = 1 if requestj matched thé’s role and?[ j, k] = 0 otherwise.

The trace of a history includes the encrypted role assigniiss of all clientsLy stored by
the SP and which can change as new roles are added and ofiamsdf join the system, the
trace of each request, and the role matching paefor each client.
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During an interaction, the adversary cannot see directypthintext of the request, instead
it sees the ciphertext. The view of a request is defined as:

Definition 5 (View of a Request) We define the view of a request ginder a key set | as:
Vi, (@") = tr(g™)

Definition 6 (View of a History) We define the view of a history with i interactiofi§ as
VKU(Hi) = (Lgl, ey Lgi, VKm(qL{i), ey VKw(qui)_

The security definition is based on the idea that the schemsecisre if nothing is leaked to
the adversary beyond what the adversary can learn fromstrace

We define the following game in which an adversatygenerates two historiefi, and#j;
with the same trace oveérequests. Then the adversary is challenged to distingheskiiews of
the two histories. If the adversary succeeds with neglgisbbability, the scheme is secure.

Definition 7 (Non-adaptive indistinguishability against a curious.SP)e SR scheme is secure
in the sense of non-adaptive indistinguishability agaastrious SP if for all ie N and for all
PPT adversariesA there exists a negligible function negl such that:

(paramsmsR « Init(1%)
(Ku, Kg) « KeyGeifimsk U)
Prib = b| Hio Hir «— A(Ks) < = + neglk) ®)
b (0,1 2
b« A(Ks, Vi, (Hib))

where U is a set of user IDs, Ks the user side key setsg Kre the server side key sefd;; and
o are two histories over i requests such tha(Fo) = Tr(Hi1).

Theorem 3. If the DDH problem in hard relative tés, then the SR scheme is a non-adaptive
indistinguishable secure scheme. The success probatifiléyPPT adversan in breaking the
SR scheme is defined as:

Sucé'(k) = 2PrLARAL), TD(Fo)) = O]+
%Pr[ﬂ(RA(El), TD(r)) = 1] (6)

< 5 +neglk)
where RAL)) is the role encryption of the vector of lists of,ldnd T OF;) is theClientTD of the

roles in the requests of;H

Proof. We consider an adversa#y that challenges the RE IND-CPA game usifigas a
sub-routine A’ does the following:

o A’ receives public parameteparamsand the server side, ) keys.

e To generate a view of a histofi; = (L}*,...,L", " ..., q"). A’ performs the following
steps:

— For each role assignment Iitsfl, run Algorithm 5 to encrypt it aRA(L;”).

— For each Search Role reque#t, run ClientT Dto generate the trapdodrD(r) for
the role.
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o A outputsHio, Hiy. A’ encryptsH;, by itself and challenges the RE IND-CPA game with
Lo andLj, the vectors of all roles lists in the two histories. It géts tesultRA(Ly) where

b & {0,1} and forms a view of a historyRA(Ly), T D(r7)). It sends the view toA.
e Atries to determine which vector was encrypted and outipus{0, 1}.
o A’ outputsb'.
Because th®Ascheme is IND-CPA, it follows that:
3 + neglk) > Sucg,(k)

= %Pr[ﬂ((RA(lzo),TD(ﬁl))) - 0]+ @)
IPIA(RALL), TD(R))) = 1]

Now let us consider another adversaiyf who wants to distinguish the pseudorandom func-
tion f usingA as a sub-routine. The adversary does the following:

e It generates(, g, g, h, H) as public parameters, and sends then#italong with f. For
each uset, it chooses randomly;;, X such that; + X2 = x. It sends all i, x;2) to A and
keeps all {, X1, Xi2).

e A outputsHig, Hi1. A” encrypts all the roles lists g asRA(Eo). It choosed & {0, 1}
and asks the oracle to encrypt all roles#fy,. It combines the results to form a view
(RA(Lp), TD(f})) and returns it toA.

o A outputsh’. A” outputs 1 ifb’ = b and O otherwise.

There are two cases to consider: Case 1: the oracldis game is the pseudorandom
function f, then:

PriA” (1) = 1] =
IPITARALD), TD(10)) = O+ ®)
sPIARAL), TD(r1)) = 1]
Case 2: the oracle iffi”s game is a random functidp, then for each distinct rolg, o is

completely random tcA. Moreover, we know the traces are identical R&L;,) andT D(F},) are
completely random tcA. In this case:

PrA 01 = 1] = 2 ©)

Becausef is a pseudorandom function, by definition it holds that:

IPr[A” 015 = 1] - PrlA’ 015 = 1]| < neglk)

PILA”S0(14) = 1] < 1 + neg(k) (10)

Sum upS ucg(K) andPr[A” =0 (1) = 1]:
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1+ neg(K) > 1PIIARA(L,). TD(fg)) = O]+
SPIIARALD), TD() = 1]+
SPILARALD), TD() = O]+
1P ARALY), TD(R)) = 1]

2 - (11)
= 5 PrIA(RA(Lo), T D(rp)) = 0]+
+

=N

LprARALL. TD() = 11+
- 14 sucé(iy

ThereforeS uc€'(K) < 3 + neglK).

7.4. Revealing Policy Structure

The policy structure reveals information about the opesateuch as AND and OR, and
the number of operands used in the contextual condition. vBocome this problem, dummy
attributes could be inserted in the tree representing gardkconditions. Similarly, the PIP can
send dummy attributes to the PDP at the time of policy evaloab obfuscate the number of
attributes required for evaluating any contextual copditi

8. Performance Analysis

In this section, we discuss a quantitative analysis of thopaance ofESPOOMggac It
should be noticed that here we are concerned about quagtifige overhead introduced by the
encryption operations performed both at the trusted enmient and the outsourced environ-
ment. In the following discussion, we do not take into act¢dhe latency introduced by the
network communication.

8.1. Implementation Details

We have implementeESPOOMggacin Java 16. We have developed all the components of
the architecture required for performing the policy deptent and policy evaluation phases. For
the cryptographic operations, we have implemented alluhetfons presented in Sectibh 6. We
have tested the implementationEBEPOOMggacON a single node based on an Intel Core2 Duo
2.2 GHz processor with 2 GB of RAM, running Microsoft Windows Xfofessional version
2002 Service Pack 3.

8.2. Performance Analysis of the Policy Deployment Phase

In this section, we analyse the performance of the policyayepent phase. In this phase,
an Admin User encrypts policies and sends those encrypieggsato the Administration Point
running in the outsourced environment. The AdministraRoaint re-encrypts policies and stores
them in the Policy Store in the outsourced environment. énfthlowing, we analyse the perfor-
mance of deploying (part of) policies including role assigmt, permission assignment, contex-
tual conditions and role hierarchy graph.

Role Assignment: In order to deploy a role assignment policy, an Admin Usefgrers
a first round of encryption on the client side (see Algorifijrabd sends the client encrypted
role assignment policy to the Administration Point. The Adlistration Point performs another
round of encryption on the server side (see Algorilim 6) teeéboring role assignment policy in
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the Policy Store. Figurfe I0{a) shows performance overhadteclient side, as well as on the
server side in order to deploy a role assignment policy. ixghaph, we observe the performance
by increasing number of roles in a role assignment policywascan expect, the performance
overhead increases linearly with the linear increase imtiraber of roles in a role assignment
policy. As we can notice, the graph grows linearly with the&r increase in the number of roles
in the role assignment policy.

During the policy deployment phase, the encryption algarmibn the client side (Algorithm
[3) takes more time that of the server side (Algorifim 4) aswshio Figure[1D. The encryption
algorithm on the client side takes more time because it pgganore complex cryptographic
operations such as random number generation and hashatelouhs illustrated in Algorithm
[B. However, any policy is deployed very rarely; whereas, alyrbe evaluated quite frequently.
Therefore, the performance overhead of the policy evalnathase (discussed in Section 8.3) is
of great importance.

Permission Assignment: For deploying permissions to a role, an Admin User perforfirsa
round of encryption on the client side (see Algorithim 7) agwds both the client encrypted role
and client encrypted permissions to the AdministratiomBavhere each permission contains
both an action and a target. The Administration Point geaerdne server encrypted role and
server encrypted permissions after performing a seconadrofiencryption on the server side
(see Algorithn8). Figurg 10(b) shows the performance aadhof deploying a permission
assignment policy. This graph illustrates the performarfaeploying a permission assignment
policy for a role with a number of permissions ranging fromo120. As we can expect, the
performance overhead increases linearly with the lineae#se in the number of permissions in
the permission assignment policy.

Contextual Conditions: Both role assignment and permission assignment polic@gde a
contextual condition as we can see in Figlre 2 and Figurespertively. The contextual con-
dition is represented as a tree structure as illustratedgimr€[4. During the policy deployment
phase, an Admin User encrypts each leaf node of the tree (geeitAm[3) while the Admin-
istration Point re-encrypts each leaf node (see Algorifiinaind finally stores the tree in the
Policy Store either in the Role Repository or the Permis8&lepository.

In the tree representing contextual conditions, leaf nodpsesent string comparisons (for
instancelocation= Cardiologyward) andor numerical comparisons (for instanéecessTime
> 9). A string comparison is always represented by a singlerlede while a numerical com-
parison may require more than one leaf nodes. In the worst essingle numerical comparison,
represented asbits, may requires separate leaf nodes. Therefore, numerical comparisores hav
a major impact on the encryption of a policy at deploymengetim

Figure[TI(@) illustrates the performance overhead of g@pdonumerical and string compar-
isons. In this graph, we increase the number of string coisqas and numerical comparisons
present in the contextual condition of a policy. As the gratble time taken by deployment
functions on the client side and the server side grow liyeaith the number of comparisons in
the contextual condition. The numerical comparisons hateper line because one numerical
comparison of sizes may be equivalent t@ string comparisons in the worst case. For string
comparisons, we have usedlttributeName=attributeValug’, wherei varies from 1 to 10. For
numerical comparisons, we have usettfibuteName< 15447

2Jt should be noted that using the comparison less than 15 ihierdpresentation represents the worst case scenario
requiring 4 leaf nodes.
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To check how the size of the bit representation impacts oretteeyption functions during
the deployment phase, we have performed the following éxwgert. We fixed the number of
numerical comparisons in the contextaul condition to omlg and increased the sigef the bit
representation from 2 to 20 for the comparisatttfibuteName< 2% — 1. Figure 1I(H) shows
the performance overhead of the encryption during the paleployment phase on the client
side, as well as on the server side. We can see that the p@jdgyinent time incurred grows
linearly with the increase in the sizeof a numerical attribute. In general, the time complexity
of the encryption of the contextual conditions during thégyodeployment phase i®(m + ns)
wherem s the number of string comparisomsis the number of numerical comparisons, and
represents the number of bits in each numerical comparison.

Role Hierarchy Graph: The PDP may search for a base role of the one in the accessteque
REQsince a derived role inherits all permissions from its bade. rFor supporting this search,
we deploy arole hierarchy graph. For deploying a role h@nagraph, an Admin User performs
the first round in order to generate the client encryptediwap as well as to calculate the client
generated trapdoor of each role in the graph (see AlgofifimThe Admin User sends the client
generated role hierarchy graph to the Administration Pdihie Administration Point performs
the second round to generate the server encrypted trapa®aevell as to calculate the server
generated trapdoor of each role in the graph (see Algofi)mThe PDP matches the trapdoor
of role in REQwith the server encrypted role and if this match is succéssfinds trapdoors of
the base roles. The trapdoors of base roles are requiredén tw perform search in the list of
server encrypted roles in the Permission Repository.

In our experiment, we consider a role hierarchy graph in tveiach rold; extends roldz;. 1
for all values ofi from 0 ton — 1 wheren indicates the total number of nodes and varies from 5
to 25. Figurd 10(¢) shows the performance overhead of etingyp role hierarchy graph both
on the client side and the server side. The graph grows linedth the number of roles in a role
hierarchy graph.

Table 1: Performance overhead of encrypting requests dtlvengolicy evaluation phase
Request Type | Time (in milliseconds)
ACT 16.353
REQ 47.069

8.3. Performance Analysis of the Policy Evaluation Phase

In this section, we analyse the performance of the policjuat@n phase. In this phase, a
Requester sends the encrypted request to the PEP runnihg outsourced environment. The
PEP forwards the encrypted request to the PDP. The PDP hatetd the set of policies that
are applicable to the request. The PDP may require confeéxfoamation in order to evaluate
the selected policies. In the following, we calculate thefgrenance overhead of generating
requests, search arole (in the Role Repository, in the A&mles repository or in the Permission
Repository), searching a permission, evaluating conééxtonditions and searching a role in a
role hierarchy graph.

Generating Requests: A Requester may send the role activation reqée3T. In order to
generatéACT, a Requester calculates the client generated role (seeithigdl3). This trapdoor
generation of role takes 16.353 milliseconds as illustraterable[l. After a Requester is active
in a role, she may make an access reqiS0. A Requester has to calculate trapdoor for
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each element (including role, action and targetRBQ The REQ generation takes 47.069
milliseconds as illustrated in Tab[é 1. We can see BR&Q generation takes 3 times &CT
generation becausREQhas to calculate 3 trapdoors whi#dCT has to generate only a single
trapdoor. The request generation does not depend on anpneins and can be considered
constant.

Searching a Role in Role Repository/Session: In order to grantACT, the PDP needs to
search roles in the Role Repository. For searching a roee PP first calculates the server
generated trapdoor of role CT and then matches this server encrypted trapdoor with server
encrypted roles in the role assignment list as illustratedlgorithm[16. Figurd I2(@) shows
the performance overhead (in the worst case) of perfornfirggsiearch. In this graph, we can
observe that it grows linearly with increase in number oésolAs the graph indicates, the search
function takes initial approximately 4 milliseconds to gestte the server encrypted trapdoor of
role in ACT while it takes approximately.6 milliseconds to perform encrypted match.

The PDP grant&CT by adding the server encrypted role of the Requester in thigeARoles
repository of the Session. This implies that the Sessiomtaiais a list of active roles. Once a
Requester makes an access reqRED the PDP has to search in the Session if she is already
active in role indicated iIREQ The performance overhead of searching a role in sessiamis s
as it incurs for searching a role in the Role Repository (showFigurg 12(3)).

Searching aRolein Permission Repository: After finding the role oREQIn the list of active
roles, the PDP has to search if the same role has the requeestadssion. For this purpose, the
PDP has first to search the roleREQin the Permission Repository and if any match is found, it
has to search the requested permission in the list of paonisassigned to the found role. Figure
[L2(b] shows the performance overhead (in the worst cas&an€lsing a role in the Permission
Repository. The graph grows linearly with the increase enrtamber of roles in the Permission
Repository. The PDP runs Algorithin]16 but with a slight madifion of ignoring the server
trapdoor generation (in Lirfg 2) as it is already generatednathe role ofREQis searched in
the session. This is why, searching a role in the Permissapo&itory (as illustrated in Figure
[L2(b)) takes less time than searching a role in the Role Repp®r Session (as illustrated in
Figure[T2(d)).

Searchinga Permission: After arole is found in the Permission Repository, the PDRd®es
the requested permission in the list of permissions asdigmtihe found role (see Algorithm117).
Before searching the list of permissions, the PDP has talzdte server generated trapdoors of
both the action and the target presenRBEQ As we explained earlier, a single trapdoor gen-
eration on the server side takes approximately 4 millisdsorThe trapdoor generation of the
requested permission, containing an action and a tardegs t& milliseconds. Next, the PDP
match (server generated trapdoors of) this requested ggiomiwith the list of (sever encrypted)
permissions assigned to the found role. Fidure 12(c) shbeipérformance overhead (in the
worst case) of searching server generated trapdoor of pgioniwith a list of server encrypted
permissions. The graph grows linearly with the increasb@mumber of permissions in the list.
For each permission match, the PDP performs (at most) twiyeted matches each incurring
approximately 0.6 milliseconds.

Evaluating Contextual Conditions. For evaluating role assignment (illustrated in Figure
) or permission assignment (illustrated in Figlite 3) peficthe PDP may need to evaluate
contextual conditions. For evaluating contextual coondsi the PDP needs to fetch contextual
information from the PIP. The The PIP is responsible to cbkand send the required contextual
information that include information about the Requester ihstance, Requester’s location or
Requester’s age) or the environment in which the requesaden(for instance, time or tempera-
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ture). The PIP transforms these attributes into trapdosiaré sending to the PDP (as illustrated
in Algorithm[I8). For each single string attribute (for iaste,Location:= Cardiologyward),
the PIP generates a single trapdoor. For each numericddugétrof size s-bit (for instance,
AccessTime: 10#5), the PIP generates s trapdoors. Figure 13(a) shows therpenfice over-
head of generating trapdoors by the PIP on the client sidedidrnumerical and string attributes.
In our experiment, we vary number of attributes (both stang numeric) from 1 to 10. As we
can see, the graph grows linearly with the increase in nurabettributes. For numerical at-
tributes, the curve of trapdoor generation on the clien¢ s&dsteeper than that of the string
attributes because numerical attribute is of size s bitgevhes set to 4. This means that each
numerical attribute requires 4 trapdoors; on the other hanstring attribute requires only a
single attribute. We observe also the behaviour of gemgratiient trapdoors for a numerical
attribute of varying size. Figufe I3[b) shows behaviouresigrating on the client side trapdoors
of a numerical attribute of varying size ranging from 2 to 28.bThis graph grows linearly with
the increase in number of bits, representing size of a nwalattribute.

After receiving trapdoors of contextual information, theFPmay evaluate a contextual con-
dition. To evaluate the tree representing a contextual iiong the PDP matches contextual
information against the leaf nodes in the tree, as illustran Algorithm[20. To quantify the
performance overhead of this encrypted matching, we haxferpeed the following test. First,
we have considered two cases: the first case is the one in wecRIP provides only string
attributes and the contextual condition contains onlyngtdomparisons; in the second, the PIP
provides only numerical attributes and the contextual d¢@wconsists only of numerical com-
parisons. For both cases, the number of attributes vagester with the number of comparisons
in the tree. In particular, if the PIP providedifferent attributes then the contextual condition
will contain n different comparisons.

Figure[I3(d) shows also the performance overhead of ewrdustring and numerical com-
parisons on the server side. As we can see, the conditionati@i for numerical attributes has
a steeper curve. This can be explained as follows. For theéise, for each string attribute only
a single trapdoor is generated. A string comparison is sgmted as a single leaf node in the tree
representing a contextual condition. This meanstheapdoors in a request are matched against
mleaf nodes in the tree resulting ir{nm) complexity (however, in our experiments the number
of attributes and the number of comparisons are always the)d-or the case of the numerical
attributes, we have also to take in to consideration thespitasentation. In particular, for a give
numerical attribute represented @bits, we need to generagdifferent trapdoors. This means
thatn numerical attributes in a request will be converted insalifferent trapdoors. These trap-
doors then need to be matched against the leaf nodes refingsér® numerical comparisons.
Figure[I3(B) shows the performance overhead of evaluatmgneerical comparison where the
size of a numerical attribute varies from 2 to 20. As we hageutsed for the policy deployment
phase, in the worst case scenario, a numerical comparisarsfbit numerical attribute requires
s different leaf nodes. In a tree with different numerical comparisons, this means thanthe
trapdoors need to be matched againstesulting inO(nm<) complexity.

Searching a Role Hierarchy Graph: The PDP may search a role in the role hierarchy graph.
For performing this search, we consider a role hierarchglygna which each rol& extends role
R .1 for all values ofi from 0 ton— 1 wheren indicates the total number of nodes and varies from
5 to 25. Figurg 12(dl) shows the performance overhead of Isiegre role in the role hierarchy
graph deployed on the server side. As we can expect, the grapls linearly with the number
of roles in a role hierarchy graph.

Comparing ESPOONRggac With ESPOON We compare the performance overheads of the
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policy evaluation oESPOONRgacWith that ofESPOOI\[Iﬂ]. Before we show the comparison,
we see how policies are expressed in BBBPOONrgac aNdESPOON The ESPOONRgac
policies are explained in Section #.2. TESPOONpolicy is expressed as 8, A, T) tuple
with a CONDITION, meaning ifCONDITION holds then subjec® can take actiomA over
targetT. For comparing the performance overheads, we con&&&tOONpolicies with 50
unique subjects and each subject has 10 unique actions ayedstavhere eackS, A, T) tu-
ple’s condition is the conjunction (AND) of the contextuaindition illustrated in Figurgl4 and
RequesterName<NAME>. That is, a subject can execute action over the target pedvédib-
ject’s name is equal to one specified in the condition, sukjéucation is cardiology-ward and
time is between 9 AM and 5 PM. Similarly, we considE8POONRgac policies with 50 unique
roles and each role has 10 unique permissions, where eackarsget active in 5 roles. The
introduction of RBAC simplifies the roles and permission agement because we can enforce
possible conditions at role activation time instead of etifgy them at the permission grant time.
For instance, we can enforce location and time checkstfie condition illustrated in Figufd 4)
at the role activation time while the conditi®tequesterName<NAME> can be enforced at the
permission grant time.

Figure[I4 shows the performance overheads of evaluBESROONaNdESPOONggacpoli-
cies. INESPOON a requester’s subject is matched with one in the reposithBp0 entries (i.e.,
50 subjects each with 10 actions and targets). If there isvaatgh, requester’s action and target
are matched and then condition is evaluated. In the worst @@&ESPOON the access request
processing can take approximately up to 500 milliseconasth® other hand, iIESPOONRggac
a requester first gets active in a role provided conditiordiol The role activation can take
approximately up to 60 milliseconds for a user that can gétea 5 roles. After the role acti-
vation, a requester can be granted permissions assignesdréde. However, first the active role
is searched in the session and then the permission can ldedjiftine condition associated with
that permission holds. As we can see in Fidurk 14, gratingpémmission takes up to 42 mil-
liseconds. The reason wisSPOOMgeac performance is better than thatBEPOONbecause
(i) all possible conditions are enforced at the role adiratime and (ii) introduction of roles
simplified the roles and permissions management.

We also consider thefiect of role hierarchies on tHESPOOMggac performance. In a role
hierarchy, we assume that a role can inherit all permisdiams its base role. This simplifies
the role management and permission assignment to rolesurlexperimentation, we consider
50 roles where each role has 5 permissions. Furthermone i@ role hierarchy graph con-
taining 25 roles, which is necessary for finding inheritaretationship between roles. Figlre 14
shows a very slight performance gain to evaluate the acegs®st in case of role hierarchy in
ESPOONRrgac Since the permission can be associated with base role, @getograverse in the
role hierarchy graph to find base roles. The performanceawétsing in the role hierarchy graph
is shown in Figur€14. Finally, the requested permissiorrasigd if associated even with any
base roles. The role hierarchy may improve performancerbtite worst case it incurs higher
overhead. However, the performanceESPOONMRgrgac With role hierarchy is still better than
that of ESPOON

9. Conclusions and Future Work

In this paper, we have presented EfePOONRrgacarchitecture to support RBAC policies for
outsourced environments. Our approach separates thetgealicies from the actual enforcing
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mechanism while guaranteeing the confidentiality of RBAGgies assuming the SP is honest-
but-curious. The main advantage of our approach is that RBAl&ies are encrypted but it
still allows the PDP to perform the policy evaluation withoevealing contents of requests or
policies. SecondESPOONRgacis capable of handling complex contextual conditions i)
non-monotonic boolean expressions and range queriedlyi-tha authorised users do not share
any encryption keys making the process of key managemeyteatable. Even if a user key is
deleted or revoked, the other entities are still able toguerftheir operations without requiring
re-encryption of RBAC policies.

As future directions of our research, we are working on irgggg a secure audit mechanism
in ESPOONRrgac The mechanism should allow the SP to generate genuinelagditvithout
allowing the SP to get information about both the data andhtilieies. However, an auditing
authority must be able to retrieve information about wheeased the data and what policy was
enforced for any access request made. Another directioarafiork is towards the extension of
the encrypted search and match capabilities to handle geafanegative authorisation policies
and policies for long-lived sessions where the conditiazedto be continuously monitored and
the attributes of the request can be dynamically updated.
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Figure 1: TheESPOONMRrgacarchitecture for enforcing RBAC policies in outsourcedismvments

if (CONDITION) then (USER can be active in ({R;,Ry,..., R.})

Figure 2: RBAC Policy: Role assignment

if (CONDITION) then (R) can execute {({(A1,T1),(A2,T2),...,(An To)})

Figure 3: RBAC Policy: Permission assignment

Location=Cardiology-ward

ATHO*** AT:#*Q**  AT*O* AT:*¥%%Q

AT**1%* ATxx*1*
Figure 4: An example of contextual condition illustratibgcation= Cardiologyward andAT > 9#5 andAT < 17#5
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Ry extends ({R.Rj,..., Ry 1)
Ry, extends ({R.Ri,..., R 1)

i?n extends {({R,Rj,..., R b

Figure 5: RBAC Policy: Role hierarchy
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