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Abstract

Data outsourcing is a growing business model offering services to individuals and enterprises
for processing and storing a huge amount of data. It is not only economical but also promises
higher availability, scalability, and more effective quality of service than in-house solutions. De-
spite all its benefits, data outsourcing raises serious security concerns for preserving data con-
fidentiality. There are solutions for preserving confidentiality of data while supporting search
on the data stored in outsourced environments. However, such solutions do not support access
policies to regulate access to a particular subset of the stored data.

For complex user management, large enterprises employ Role-Based Access Controls (RBAC)
models for making access decisions based on the role in whicha user is active in. However,
RBAC models cannot be deployed in outsourced environments as they rely on trusted infras-
tructure in order to regulate access to the data. The deployment of RBAC models may reveal
private information about sensitive data they aim to protect. In this paper, we aim at fill-
ing this gap by proposingESPOONERBAC for enforcing RBAC policies in outsourced environ-
ments.ESPOONERBACenforces RBAC policies in an encrypted manner where a curious service
provider may learn a very limited information about RBAC policies. We have implemented
ESPOONERBAC and provided its performance evaluation showing a limited overhead, thus con-
firming viability of our approach.

Keywords: Encrypted RBAC, Policy Protection, Sensitive Policy Evaluation, Secure Cloud
Storage, Confidentiality;

1. Introduction

In recent years, data outsourcing has become a very attractive business model. It offers
services to individuals and enterprises for processing andstoring a huge amount of data at very
low cost. It promises higher availability, scalability, and more effective quality of service than
in-house solutions. Many sectors including government andhealthcare, initially reluctant to data
outsourcing, are now adopting it [25].
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Despite all its benefits, data outsourcing raises serious security concerns for preserving data
confidentiality. The main problem is that the data stored in outsourced environments are within
easy reach of service providers that could gain unauthorised access. There are several solutions
for guaranteeing confidentiality of data in outsourced environments. For instance, solutions as
those proposed in [13, 19] offer a protected data storage while supporting basic search capabilities
performed on the server without revealing information about the stored data. However, such
solutions do not support access policies to regulate the access to a particular subset of the stored
data.

1.1. Motivation
Solutions for providing access control mechanisms in outsourced environments have mainly

focused on encryption techniques that couple access policies with a set of keys, such as the
one described in [10]. Only users possessing a key (or a set ofhierarchy-derivable keys) are
authorised to access the data. The main drawback of these solutions is that security policies are
tightly coupled with the security mechanism, thus incurring high processing cost for performing
any administrative change for both the users and the policies representing the access rights.

A policy-based solution, such the one described for the Ponder language in [28], is more
flexible and easy to manage because it clearly separates the security policies from the enforce-
ment mechanism. However, policy-based access control mechanisms are not designed to operate
in outsourced environments. Such solutions can work only when they are deployed and oper-
ated within a trusted domain (i.e., the computational environment managed by the organisation
owning the data). If these mechanisms are outsourced to an untrusted environment, the access
policies that are to be enforced on the server may leak information on the data they are protect-
ing. As an example, let us consider a scenario where a hospital has outsourced its healthcare data
management services to a third party service provider. We assume that the service provider is
honest-but-curious, similar to the existing literature ondata outsourcing (such as [12]), i.e., it is
honest to perform the required operations as described in the protocol but curious to learn infor-
mation about stored or exchanged data. In other words, the service provider does not preserve
data confidentiality. A patient’s medical record should be associated with an access policy in
order to prevent an unintended access. The data is stored with an access policy. As an example,
let us consider the following access policy:only a Cardiologist may access the data. From this
policy, it is possible to infer important information aboutthe user’s medical conditions (even if
the actual medical record is encrypted). This policy reveals that a patient could have heart prob-
lems. A misbehaving service provider may sell this information to banks that could deny the
patient a loan given her health conditions.

Now-a-days, the most widely used security model is Role-Based Access Controls (RBAC)
[30] that makes decision based on role in which a user is active in [24]. However, the current
variants of RBAC model cannot be deployed in outsourced environments as they assume a trusted
infrastructure in order to regulate access on data. In RBAC models, RBAC policies may leak
information about the data they aim to protect. Asgharet al. [1] proposeESPOONthat aims
at enforcing authorisation policies in outsourced environments. They extendESPOON[1] to
support RBAC policies and role hierarchies [2]. However, they consider that the role assignment
is performed by the Company RBAC Manager, which is run in the trusted environment.

1.2. Research Contributions
In this paper, we present an RBAC mechanism for outsourced environments where we sup-

port full confidentiality of RBAC policies. We named our solution ESPOONERBAC (Enforcing
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Security Policies in OutsOurced envirOnmeNts with Encrypted RBAC). One of the main advan-
tages ofESPOONERBAC is that we maintain the clear separation between RBAC policies and the
actual enforcing mechanism without loss of policies confidentiality under the assumption that
the service provider is honest-but-curious. Our approach allows enterprises to outsource their
RBAC mechanisms as a service with all the benefits associatedwith this business model without
compromising the confidentiality of RBAC policies. Summarising, the research contributions of
our approach are threefold. First, the service provider does not learn anything about RBAC poli-
cies and the requester’s attributes during the policy deployment or evaluation processes. Second,
ESPOONERBAC is capable of handling complex contextual conditions (a part of RBAC policies)
involving non-monotonic boolean expressions and range queries. Third, the system entities do
not share any encryption keys and even if a user is deleted or revoked, the system is still able to
perform its operations without requiring re-encryption ofRBAC policies. As a proof-of-concept,
we have implemented a prototype of our RBAC mechanism and analysed its performance to
quantify the overhead incurred by cryptographic operations used in the proposed scheme.

1.3. Organisation

The rest of this paper is organised as follows: Section 2 reviews the related work. Sec-
tion 3 provides an overview of RBAC models. Section 4 presents the proposed architecture of
ESPOONERBAC. Section 5 and Section 6 focus on solution details and algorithmic details, re-
spectively. Section 7 provides security analysis ofESPOONERBAC. Section 8 analyses the perfor-
mance overhead ofESPOONERBAC. Finally, Section 9 concludes this paper and gives directions
for the future work.

2. Related Work

Work on outsourcing data storage to a third party has been focusing on protecting the data
confidentiality within the outsourced environment. Several techniques have been proposed al-
lowing authorised users to perform efficient queries on the encrypted data while not revealing
information on the data and the query [32, 6, 14, 9, 17, 7, 34, 4, 27, 31, 13]. However, these
techniques do not support the case of users having different access rights over the protected data.
Their assumption is that once a user is authorised to performsearch operations, there are no
restrictions on the queries that can be performed and the data that can be accessed.

The idea of using an access control mechanism in an outsourced environment was initially
explored in [11, 12]. In this approach, Vimercatiet al. provide a selective encryption strategy for
enforcing access control policies. The idea is to have a selective encryption technique where each
user has a different key capable of decrypting only the resources a user is authorised to access.
In their scheme, a public token catalogue expresses key derivation relationships. However, the
public catalogue contains tokens in the clear that express the key derivation structure. The tokens
could leak information on access control policies and on theprotected data. To circumvent the
issue of information leakage, in [10] Vimercatiet al. provide an encryption layer to protect
the public token catalogue. This requires each user to obtain the key for accessing a resource
by traversing the key derivation structure. The key derivation structure is a graph built (using
access key hierarchies [3]) from a classical access matrix.There are several issues related to
this scheme. First, the algorithm of building key derivation structure is very time consuming.
Any administrative actions to update access rights requirethe users to obtain new access keys
derived from the rebuilt key derivation structure and it consequently requires data re-encryption
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with new access keys. Therefore, the scheme is not very scalable and may be suitable for a static
environment where users and resources do not change very often. Second, the scheme does not
support complex policies where contextual information maybe used for granting access rights.
For instance, only specific time and location information associated with an access request may
be legitimate to grant access to a user.

Another possible approach for implementing an access control mechanism is protecting the
data with an encryption scheme where the keys can be generated from the user’s credentials (ex-
pressing attributes associated with that user). Although these approaches are not devised partic-
ularly for outsourced environments, it is still possible touse them as access control mechanisms
in outsourced settings. For instance, a recent work by Narayan et al. [22] employ the variant
of Attribute Based Encryption (ABE) proposed in [5] (i.e., Ciphertext Policy ABE, or CP-ABE
in short) to construct an outsourced healthcare system where patients can securely store their
Electronic Health Record (EHR). In their solution, each EHRis associated with a secure search
index to provide search capabilities while guaranteeing noinformation leakage. However, one
of the problems associated with CP-ABE is that the access structure, representing the security
policy associated with the encrypted data, is not protected. Therefore, a curious storage provider
might get information on the data by accessing the attributes expressed in the CP-ABE poli-
cies. The problem of having the access structure expressed in cleartext affects in general all the
ABE constructions [29, 15, 26, 5]. Therefore, this mechanism is not suitable for guaranteeing
confidentiality of access control policies in outsourced environments.

Asgharet al. [1] proposeESPOONthat aims at enforcing authorisation policies in out-
sourced environments. InESPOON, a data owner (or someone on the behalf of data owners)
may attach an authorisation policy with the data while storing it on the outsourced server. Any
authorised requester may get access to the data if she satisfies the authorisation policy associated
with that data. However,ESPOONlacks to provide support for RBAC policies. In [2], Asghar
et al. extendedESPOONto support RBAC policies and role hierarchies. However, in [2] the
role assignment is performed by the Company RBAC Manager, which is run in the trusted envi-
ronment. On the other hand, in our current architecture, therole assignment is performed by the
service provider running in the outsourced environment. Inother words, we have eliminated the
need of an additional online-trusted-server i.e., the Company RBAC Manager.

Related to the issue of the confidentiality of the access structure, the hidden credentials
scheme presented in [16] allows one to decrypt ciphertexts while the involved parties never reveal
their policies and credentials to each other. Data can be encrypted using an access policy con-
taining monotonic boolean expressions which must be satisfied by the receiver to get access to
the data. A passive adversary may deduce the policy structure, i.e., the operators (AND, OR, m-
of-n threshold encryption) used in the policy but she does not learn what credentials are required
to fulfill the access policy unless she possesses them. Bradshaw et al. [8] extend the original
hidden credentials scheme to limit the partial disclosure of the policy structure and speed up the
decryption operations. However, in this scheme, it is not easy to support non-monotonic boolean
expressions and range queries in the access policy. Last, hidden credentials schemes assume that
the involved parties are online all the time to run the protocol.

3. Overview of RBAC Models

RBAC [30] is an access control model that logically maps wellto the job-function specified
within an organisation. In the basic RBAC model, a system administrator or a security officer
assigns permissions to roles and then roles are assigned to users. A user can make an access
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request to execute permissions corresponding to a role onlyif he or she is active in that role. A
user can be active in a subset of roles assigned to him/her by making a role activation request. In
RBAC, a session keeps mapping of users to roles that are active.

In [30], Sandhuet al. extend the basic RBAC model with role hierarchies for structuring roles
within an organisation. The concept of role hierarchy introduces the role inheritance. In the role
inheritance, a derived role can inherit all permissions from the base role. The role inheritance
incurs extra processing overhead as requested permissionsmight be assigned to the base role of
one in which the user might be active.

The RBAC model may activate a role or grant permissions whiletaking into account the
context under which the user makes the access request or the role activation request [20, 18, 33,
23, 21]. The RBAC model captures this context by defining contextual conditions. A contextual
condition requires certain attributes about the environment or the user making the request. These
attributes are contextual information, which may include access time, access date and location
of the user who is making the request. The RBAC model grants the request if the contextual
information satisfy the contextual conditions.

4. TheESPOONERBAC Approach

ESPOONERBAC aims at providing RBAC mechanism that can be deployed in an outsourced
environment. Figure 1 illustrates the proposed architecture that has similar components to the
widely accepted architecture for the policy-based management proposed by IETF [35]. In
ESPOONERBAC, an Admin User deploys (i) RBAC policies and sends them to theAdminis-
tration Point that stores (ii) RBAC policies1 in the Policy Store. These policies may include
permissions assigned to roles, roles assigned to users and the role hierarchy graph that are stored
in the Permission Repository, the Role Repository and the Role Hierarchy repository, respec-
tively.

A Requestermay send (1) the role activation request to thePolicy Enforcement Point
(PEP). This request includes the Requester’s identifier andthe requested role. The PEP forwards
(2) the role activation request to thePolicy Decision Point(PDP). The PDP retrieves (3) the pol-
icy corresponding to the Requester from the Role Repositoryof thePolicy Storeand fetches (4)
the contextual information from thePolicy Information Point (PIP). The contextual information
may include the environmental and Requester’s attributes under which the requested role can be
activated. For instance, consider a contextual condition where a role doctor can only be activated
during the duty hours. For simplicity, we assume that the PIPcollects all required attributes and
sends all of them together in one go. Moreover, we assume thatthe PIP is deployed in the trusted
environment. However, if attributes forgery is an issue, the PIP can request a trusted authority to
sign the attributes before sending them to the PDP. The PDP evaluates role assignment policies
against the attributes provided by the PIP checking if the contextual information satisfies contex-
tual conditions and sends to the PEP (5) the role activation response. In case ofpermit, the PEP
activates the requested role by updating theSessioncontaining the Active Roles repository (6a).
Otherwise, in case ofdeny, the requested role is not activated. Optionally, a response can be sent
to the Requester (7) with eithersuccessor failure.

After getting active in a role, a Requester can make the access request that is sent to the PEP
(1). This request includes the Requester’s identifier, the requested data (target) and the action to

1In the rest of this paper, by termpolicieswe meanRBAC policies.
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be performed. The PEP forwards (2) the access request to the PDP. After receiving the access
request, the PDP first retrieves from the Session information about the Requester if she is already
active in any role (3a). If so, the PDP evaluates if the Requester’s (active) role is permitted to
execute the requested action on the requested data. For thispurpose, the PDP retrieves (3) the
permission assignment policy corresponding to the active role from the Permission Repository of
the Policy Store and fetches (4) the contextual informationfrom the PIP required for evaluating
contextual conditions in the permission assignment policy. For instance, consider the example
where aCardiologistcan access the cardiology report during the office hours. The PDP evaluates
the permission assignment policies against the attributesprovided by the PIP checking if the
contextual information satisfies any contextual conditions and sends to the PEP (5) the access
response. In case ofpermit, the PEP forwards the access action to theData Store(6b). In case if
no contextual condition is satisfied, the PDP retrieves the role hierarchy from the Role Hierarchy
repository of the Policy Store and then traverses this role hierarchy graph in order to find if any
base role, the Requester’s role might be derived from, has permission to execute the requested
action on the requested data. If so, the PEP forwards the access action to the Data Store (6b).
Otherwise, in case ofdeny, the requested action is not forwarded. Optionally, a response can be
sent to the Requester (7) with eithersuccessor failure.

The main difference with the standard proposed by IETF is that theESPOONERBACarchitec-
ture is outsourced in an untrusted environment (see Figure 1). The trusted environment comprises
only a minimal IT infrastructure that is the applications used by the Admin Users and Requesters,
together with the PIP. This reduces the cost of maintaining an IT infrastructure. Having the ref-
erence architecture in the cloud increases its availability and provides a better load balancing
compared to a centralised approach. In outsourced environments,ESPOONERBACguarantees that
the confidentiality of policies is protected not only when they are deployed but also when they
are enforced. This offers a more efficient evaluation of policies. For instance, a naive solution
would see the encrypted policies stored in the cloud and the PDP deployed in the trusted envi-
ronment. At each evaluation, the encrypted policies would be sent to the PDP that decrypts the
policies for a cleartext evaluation. After that, the policies need to be encrypted and send back
to the cloud. TheService Provider, where the architecture is outsourced, is honest-but-curious.
This means that the provider allows theESPOONERBACcomponents to follow the specified pro-
tocols, but it may be curious to find out information about thedata and the policies regulating
the accesses to the data. As for the data, we assume that data confidentiality is preserved by one
of the several techniques available for outsourced environments [13, 27, 31]. However, to the
best of our knowledge, no solution exists that addresses theproblem of guaranteeing the policy
confidentiality while allowing an efficient evaluation mechanism that is clearly separated from
the policies. Most of the techniques discussed in the related work section require the security
mechanism to be tightly coupled with the policies. In the following section, we can show that it
is possible to maintain a generic PDP separated from the security policies and able to take access
decisions based on the evaluation of encrypted policies. Inthis way, the policy confidentiality can
be guaranteed against a curious provider and the functionality of the access control mechanism
is not restricted.

4.1. System Model

Before presenting the detail of the scheme used inESPOONERBAC, it is necessary to discuss
the system model. In this section, we identify the followingsystem entities:

• Admin User: This type of user is responsible for the administration of policies stored in
6



the outsourced environment. An Admin User can deploy new policies or update/delete
already deployed policies.

• Requester:A Requester is a user that requests an access (e.g., read, write or search) over
the data residing in the outsourced environment. Before theaccess is permitted, policies
deployed in the outsourced environment are evaluated.

• Service Provider (SP):The SP is responsible for managing the outsourced computation
environment, where theESPOONERBAC components are deployed and to store the data,
and policies. It is assumed the SP is honest-but-curious (as[12] does), i.e., it allows the
components to follow the protocol to perform the required actions but curious to deduce
information about the exchanged and stored policies.

• Trusted Key Management Authority (TKMA): The TKMA is fully trusted and respon-
sible for generating and revoking the keys. For each type of authorised users (including an
Admin User and a Requester), the TKMA generates two key sets and securely transmits
the client key set to the user and the server key set to the Administration Point. The Ad-
ministration Point inserts the server side key set in theKey Store. The TKMA is deployed
on the trusted environment. Although requiring a TKMA seemsat odds with the need of
outsourcing the IT infrastructure, we argue that the TKMA requires less resources and less
management effort. Securing the TKMA is much easier since a very limited amount of
data needs to be protected and the TKMA can be kept offline most of the time.

It should be clarified that in our settings an Admin User is notinterested in protecting the
confidentiality of policies from other Admin Users and Requesters. Here, the main goal is to
preserve the confidentiality of data and policies from the SP.

4.2. Representation of RBAC Policies/Requests

In this section, we provide details about how to represent policies and requests used in our
approach. An RBAC policy contains a role assignment policy,a permission policy and a role
hierarchy graph. In the following, we discuss each of them. Figure 2 illustrates how we represent
role assignment policies inESPOONERBAC. The meaning of role assignment policy is as follows:
if contextual condition,CONDITION, is true then US ERcan be active in any role(s) out of
role set{R1,R2, . . . ,Rn}. Figure 3 illustrates how we represent permission assignment policies
in ESPOONERBAC. The meaning of permission assignment policy is as follows:if contextual
condition,CONDITION, is true then roleR can execute any permission(s) out of permission set
{(A1,T1), (A2,T2), . . . , (An,Tn)}.

The PDP evaluates contextual conditions of both role assignment and permission assignment
policies before granting the access. In order to evaluate a contextual condition, the PDP requires
contextual information. The contextual information captures the context in which a Requester
makes access or role activation requests. The PIP collects and sends required contextual informa-
tion to the PDP. To represent contextual conditions, we use the tree structure described in [5] for
CP-ABE policies. This tree structure allows an Admin User toexpress contextual conditions as
conjunctions and disjunctions of equalities and inequalities. Internal nodes of the tree structure
are AND, OR or threshold gates (e.g., 2 of 3) and leaf nodes arevalues of condition predicates
either string or numerical. In the tree structure, a string comparison is represented by a single
leaf node. However, the tree structure uses thebag of bitsrepresentation to support comparisons
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between numerical values that could express time, date, location, age, or any numerical identi-
fier. For instance, let us consider a contextual condition stating that the Requester location should
beCardiology-ward and that the access time should be between 9:00 and 17:00 hrs.Figure 4
illustrates the tree structure representing this contextual condition, where access time (AT) is in
a 5-bit representation (#5).

A Requester can make a role activation requestACT or an access requestREQ. In ACT =
(i,R), a Requester includes her identityi along with roleR to be activated. After a Requester
is active inR, she can execute permissions assigned toR. For executing any permission, a
Requester sendsREQ= (R,A,T) that includesRshe is active in, actionA to be taken over target
T. A Requester sendsACT or REQrequests to the PEP.

The PEP receives and forwards requestsACT or REQ to the PDP. The PDP fetches poli-
cies corresponding to requests from the Policy Store. The PDP may require contextual in-
formation in order to evaluate contextual conditions to grant ACT or REQ. Let us consider
CONDITION illustrated in Figure 4 requiring location of Requester andaccess time. We as-
sume the Requester makes the request when she is inCardiology-ward and access time (AT)
is 10:00 hrs. The PIP collects and then transforms this contextual information as follows:
Location= Cardiology-ward, AT : 0 ∗ ∗ ∗ ∗, AT : ∗1 ∗ ∗∗, AT : ∗ ∗ 0 ∗ ∗, AT : ∗ ∗ ∗1∗,
AT : ∗ ∗ ∗ ∗ 0, where AT is in a 5-bit representation (same as it is inCONDITION). After per-
forming transformation, the PIP sends contextual information to the PDP. The PDP receives
contextual information and then evaluatesCONDITION by first matching attributes in contex-
tual information against leaf-nodes in theCONDITION tree and then evaluating internal nodes
according to AND and OR gates.

TheESPOONERBACarchitecture supports role inheritance. In role inheritance, a derived role
can execute all permissions from its base role. Before denyingREQ, the PDP may need to check
if base role of one inREQcan execute requested permissions. In order to find base roles, we
store a role hierarchy graph on the SP. InESPOONERBAC, the PDP traverses in the role hierarchy
graph to find base roles. Figure 5 illustrates how we represent a role hierarchy graph. In Figure
5, each line represents a role that may extend a set of roles. All these inheritance rules may
form a role hierarchy graph. For instance, consider an example from healthcare domain where a
Cardiologist AssistantextendsIntern, aDoctor extendsInternand finally aCardiologistextends
both Cardiologist AssistantandDoctor. If we combine all these inheritance rules then it can
form a graph as shown in Figure 6.

In this representation, leaf-nodes inCONDITION, R, A, T of bothACTandREQ, roles in the
role hierarchy graph, and attributes in contextual information are in cleartext. Therefore, such
information is easily accessible in the outsourced environment and may leak information about
the data that policies protect. In the following, we show howwe protect such representation
while allowing the PDP to evaluate policies against requests and contextual information.

5. Solution Details

ESPOONERBACaims at enforcing policies in outsourced environments. Themain idea of our
approach is to use an encryption scheme for preserving confidentiality of policies while allowing
the PDP to perform the correct evaluation. InESPOONERBAC, we can notice that the operation
performed by the PDP for evaluating policies (against attributes in the request and contextual
information) is similar to the search operation executed ina database. In particular, in our case
the policy is a query; while, attributes in the request (ACT or REQ) and contextual information
represent the data.
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ForESPOONERBAC, as a starting point we consider the multiuser Searchable Data Encryption
(SDE) scheme proposed by Donget al. in [13]. The SDE scheme allows an untrusted server to
perform searches over encrypted data without revealing to the server information on both the
data and elements used in the request. The advantage of this method is that it offers multi-user
access without requiring key sharing between users. Each user in the system has a unique set of
keys. The data encrypted by one user can be decrypted by any other authorised user. However,
the SDE implementation in [13] is only able to perform keyword comparison based on equalities.
One of the major extensions of our implementation is that we are able to support the evaluation
of contextual conditions containing complex boolean expressions such as non-conjunctive and
range queries in multi-user settings.

In general, we distinguish four phases inESPOONERBAC for managing life cycle of poli-
cies in outsourced environments. These phases includeinitialisation, policy deployment, policy
evaluation anduser revocation. In the following, we provide details of each phase.

5.1. Initialisation Phase

In ESPOONERBAC, each user (including an Admin User and a Requester) obtainsa client side
key from the TKMA while the SP (as a proxy server) receives a server side key set corresponding
to the user. The client side key set serves as a private key fora user. The SP stores all key sets in
the Key Store. The Key Store is accessible to the Administration Point, the PEP and the PDP.

5.2. Policy Deployment Phase

For deploying (or updating existing) policies, an Admin User performs a first round of en-
cryption using her client side key set. An Admin User encrypts elements of policies. In role
assignment policies, an Admin User encrypts all roles assigned to a user. In permission assign-
ment policies, an Admin User encrypts both action and targetparts of each permission and also
encrypts the role to which these permissions are assigned. As we know that a tree represents
condition conditions of both role assignment and permission assignment policies (as shown in
Figure 4), an Admin User encrypts each leaf node of the tree while non-leaf (internal) nodes
representing AND, OR or threshold gates are in cleartext. Ina role hierarchy graph (as shown in
Figure 6), an Admin User encrypts each of its node representing a role. After completing the first
round of encryption on policies, an Admin User sends client encrypted policies to the Adminis-
tration Point on the SP. These client encrypted policies areprotected but cannot be enforced as
these are not in common format. To convert client encrypted policies to common format, the Ad-
ministration Point performs a second round of encryption using server side key set corresponding
to the Admin User. The second round of encryption serves as a proxy re-encryption. In the sec-
ond round of encryption, the Administration Point encryptsall elements that are encrypted in the
first round of encryption. Finally, the Administration Point stores server encrypted policies in
the Policy Store.

5.3. Policy Evaluation Phase

A Requester can make a role activation requestACT. Before sendingACT to the SP, a
Requester generates a client trapdoor of the role inACT. A Requester generates client trapdoor
using her client side key set. The trapdoor representation does not leak information on elements
of requests. Similarly, a Requester can make an access requestREQafter getting active in a role.
A Requester generates a client trapdoor for each element inREQ including the role, the action
and the target. A Requester sends requests containing client generated trapdoors to the PEP on
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the SP. The PEP performs another round of trapdoor generation for converting all trapdoors into
a common format. After performing a second round of trapdoorgeneration on the server side, the
PEP forwards server generated trapdoors to the PDP. The PDP fetches policies from the Policy
Store and then performs encrypted matching of trapdoors in request against encrypted elements
in policies. The encrypted matching in outsourced environments does not leak information about
elements of requests or policies.

The PDP may require contextual information in order to evaluate the contextual conditions
of policies. The PIP collects contextual information and generates client trapdoors for elements
of contextual information using her client side key set. ThePIP sends client generated trapdoors
of contextual information to the PDP. The PDP performs another round of trapdoor generation
using server side key set corresponding to the PIP. Finally,the PDP evaluates the contextual
condition by matching trapdoors of contextual informationagainst encrypted leaf nodes of the
tree representing the contextual condition (as shown in Figure 4). After evaluating leaf nodes,
the PDP evaluates non-leaf nodes of the tree based on AND, OR and threshold gates. The PDP
grants the access request if (the root node of) the tree evaluates totrue.

The PDP may need to find base roles corresponding to the role inREQ considering the
fact that a derived role has all permissions from its base role. In order to find base role, the PDP
fetches the role hierarchy graph from the Policy Store. The PDP matches trapdoor of role inREQ
against server encrypted roles in the role hierarchy graph.While deploying the role hierarchy
graph, we store also server generated trapdoor of the role along with each server encrypted of
role because the PDP needs a trapdoor of each base role so thatit can match this trapdoor against
roles in the Permission Repository. After traversing in therole hierarchy graph, the PDP extracts
server generated trapdoors of all base roles of one that matches with trapdoor of role inREQ.
The PDP verifies if any base role has requested permissions. If so, the PDP grants the request.

5.4. User Revocation Phase
In ESPOONERBAC, users do not share any keys and a compromised user can be revoked with-

out requiring re-encryption of policies or re-distribution of keys. For revoking a compromised
user, the Administration Point removes the server side key set (corresponding to the user) from
the Key Store.

Algorithm 1 Init
Input: A security parameter 1k.
Output: The public parametersparamand the master secret keymsk.

1: Generate primes p and q of size 1k such thatq | p− 1
2: Create a generatorg such thatG is the unique orderq subgroup ofZ∗p
3: Choose a randomx ∈ Z∗q
4: h← gx

5: Choose a collision-resistant hash functionH
6: Choose a pseudorandom functionf
7: Choose a random keys for f
8: param← (G,g,q,h,H, f )
9: msk← (x, s)
10: return (param,msk)

6. Algorithmic Details

In this section, we provide details of algorithms used in each phase for managing life cycle
of policies. All these algorithms constitute the proposed schema.
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6.1. Initialisation Phase

In this phase, the system is initialised and then the TKMA generates required keying ma-
terial for entities inESPOONERBAC. During the system initlisation, the TKMA takes a security
parameterk and outputs the public parametersparamsand the master key setmskby running
Init illustrated in Algorithm 1. The detail ofInit is as follows: the TKMA generates two prime
numbersp andq of sizek such thatq dividesp − 1 (Line 1). Then, it creates a cyclic groupG
with a generatorg such thatG is the unique orderq subgroup ofZ∗p (Line 2). Next, it randomly
choosesx ∈ Z

∗
q (Line 3) and computeh asgx (Line 4). Next, it chooses a collision-resistant

hash functionH (Line 5), a pseudorandom functionf (Line 6) and a random keys for f (Line
7). Finally, it publicises the public parametersparams= (G,g,q,h,H, f ) (Line 8) and keeps
securely the master secret keymsk= (x, s) (Line 9).

Algorithm 2 KeyGen
Input: The master secret keymsk, the user identityi and the public parametersparams.
Output: The client side key setKui and server side key setKsi .

1: Choose a randomxi1 ∈ Z
∗
q

2: xi2 ← x− xi1
3: Kui ← (xi1, s)
4: Ksi ← (i, xi2)
5: return (Kui ,Ksi )

For each user (including an Admin User and a Requester), the TKMA generates the keying
material. For generating the keying material, the TKMA takes the master secret keymsk, the
user identityi and the public parametersparamsand outputs two key sets: the client side key set
Kui and the server side key setKsi by runningKeyGen illustrated in Algorithm 2. InKeyGen,
TKMA randomly choosesxi1 ∈ Z

∗
q (Line 1) and computesxi2 = x − xi1 (Line 2). It creates the

client side key setKui = (xi1, s) (Line 3) and the server side key setKsi = (i, xi2) (Line 4).
After running Algorithm 2, the TKMA sends the client side keysetKui and the server side

key setKsi to useri and the Administration Point on the SP, respectively. The client side key set
Kui serves as a private key for useri. The Administration Point of the SP insertsKsi in the Key
Store by updating it as follows:KS = KS∪Ksi . The Key Store is initialised as:KS← φ. Figure
7 illustrates key distribution where Admin UserA, RequesterR and PIPP receiveKuA, KuR and
KuP, respectively. The TKMA sends the corresponding server side key setsKsA, KsR andKsP to
the Administration Point on the SP. The Administration Point inserts server side key sets into the
Key Store. Please note that only the Administration Point, the PDP and the PEP are authorised
to access the Key Store.

Algorithm 3 ClientEnc
Input: Elemente, the client side key setKui corresponding to Admin Useri and the public parametersparams.
Output: The client encrypted elementc∗i (e).

1: Choose a randomre ∈ Z
∗
q

2: σe← fs(e)
3: ĉ1 ← gre+σe

4: ĉ2 ← ĉ
xi1
1

5: ĉ3 ← H(hre)
6: c∗i (e)← (ĉ1, ĉ2, ĉ3)
7: return c∗i (e)
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Algorithm 4 ServerReEnc
Input: The client encrypted elementc∗i (e) and the server side key setKsi corresponding to Admin Useri.
Output: The server encrypted elementc(e).

1: c1 ← (ĉ1)xi2 .ĉ2 = ĉ
xi1+xi2
1 = (gre+σe)x = hre+σe

2: c2 = ĉ3 = H(hre)
3: c(e) = (c1, c2)
4: return c(e)

6.2. Policy Deployment Phase

In the policy deployment phase, an Admin User defines and deploys policies. In general, a
policy can be deployed after performing two rounds of encryptions. An Admin User performs a
first round of encryption while the Administration Point on the SP performs a second round of
encryption. For performing a first round of encryption, an Admin User runsClientEnc illustrated
in Algorithm 3. ClientEnc takes as input (policy) elemente, the client side key setKui corre-
sponding to Admin Useri and the public parametersparamsand outputs the client encrypted
elementc∗i (e). In ClientEnc, an Admin User randomly choosesre ∈ Z

∗
q (Line 1), computesσe

as fs(e) (Line 2), and then computes ˆc1, ĉ2 and ĉ3 asgre+σe (Line 3), ĉxi1
1 (Line 4) andH(hre)

(Line 5), respectively. ˆc1, ĉ2 and ĉ3 constitutec∗i (e) (Line 6). An Admin User transmits to the
Administration Point the client encrypted elements of a policy as shown in Figure 8.

The Administration Point retrieves the server side key set corresponding to the Admin User
and performs a second round of encryption by runningServerReEncillustrated in Algorithm 4.
ServerReEnctakes as input the client encrypted elementc∗i (e) and the server side key setKsi

corresponding to Admin Useri and outputs the server encrypted elementc(e). The Administra-
tion Point calculatesc1 andc2 as (ĉ1)xi2.ĉ2 = ĉxi1+xi2

1 = (gre+σe)x = hre+σe (Line 1) andĉ3 = H(hre)
(Line 2), respectively. Bothc1 andc2 form c(e) (Line 3). The Administration Point stores the
server encrypted policies in the Policy Store as shown in Figure 8.

In the following, we describe how to deploy different (parts of) policies including role as-
signment, permission assignment, contextual conditions and role hierarchy graph. For the de-
ployment of each (part of) policy, we follow general strategy as already described in this section
and also illustrated in Figure 8.

Algorithm 5 RoleAssignment:ClientSide
Input: List of rolesL to be assigned to Requesterj, the client side key setKui corresponding to Admin Useri and the public parameters

params.
Output: The client encrypted role assignment listLCi .

1: LCi ← φ
2: for each roler in list L do
3: c∗i (r)← call ClientEnc (r, Kui , params) {see Algorithm 3}
4: LCi ← LCi ∪ c∗i (r)
5: end for
6: return ( j, LCi )

Deployment of Role Assignment Policies: In order to assign roles to a Requester, an Admin
User can deploy role assignment policies. For this purpose,an Admin User runsRoleAssign-
ment:ClientSide illustrated in Algorithm 5. This algorithm takes as input a list of rolesL to be
assigned to Requesterj, the client side key setKui corresponding to Admin Useri and the public
parametersparamsand outputs the client encrypted role assignment listLCi . First, it creates and
then initialises new listLCi (Line 1). For each role inL (Line 2), it generates client encrypted
role by callingClientEnc illustrated in Algorithm 3 (Line 3) and then it updatesLCi by adding
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Algorithm 6 RoleAssignment:ServerSide
Input: The client encrypted role assignment listLCi for Requesterj and identityi of Admin User.
Output: The server encrypted role assignment listLS.

1: Ksi ← KS[i] {retrieve the server side key corresponding to Admin Useri}
2: LS ← φ
3: for each client encrypted rolec∗i (r) in list LCi do
4: c(r)← call ServerReEnc(c∗i (r), Ksi ) {see Algorithm 4}
5: LS ← LS ∪ c(r)
6: end for
7: return ( j, LS)

client encrypted role (Line 4). An Admin User sends the client encrypted role assignment list
to the Administration Point. During the second round of encryption, the Administration Point
runsRoleAssignment:ServerSideillustrated in Algorithm 6. This algorithm takes as input the
client encrypted role assignment listLCi for Requesterj and identityi of Admin User and ouputs
the server encrypted role assignment listLS. While runningRoleAssignment:ServerSide, the
Administration Point first retrieves the server side keyKsi corresponding to Admin Useri (Line
1). It creates and initialises new listLS (Line 2). For each role inLCi (Line 3), it generates server
encrypted role by callingServerReEncillustrated in Algorithm 4 (Line 4) and updatesLS by
adding the server encrypted role (Line 5).

Algorithm 7 PermissionAssignment:ClientSide
Input: List of permissionsL to be assigned to roler, the client side key setKui corresponding to Admin Useri and the public parameters

params.
Output: The client encrypted permission assignment listLCi assigned to the client generated rolec∗i (r).

1: c∗i (r)← call ClientEnc (r, Kui , params)
2: LCi ← φ
3: for each permission (action, target) in L do
4: c∗i (action)← call ClientEnc (action, Kui , params)
5: c∗i (target)← call ClientEnc (target, Kui , params)
6: LCi ← LCi ∪ (c∗i (action), c∗i (target))
7: end for
8: return (c∗i (r), LCi )

Algorithm 8 PermissionAssignment:ServerSide
Input: The client encrypted permission assignment listLCi for client generated rolec∗i (r) and identityi of Admin User.
Output: The server encrypted permission assignment listLS and the server generated rolec(r).

1: Ksi ← KS[i] {retrieve the server side key corresponding to Admin Useri}
2: c(r)← call ServerReEnc(c∗i (r), Ksi )
3: LS ← φ
4: for each client encrypted permission (c∗i (action), c∗i (target)) in list LCi do
5: c(action)← call ServerReEnc(c∗i (action), Ksi )
6: c(target)← call ServerReEnc(c∗i (target), Ksi )
7: LS ← LS ∪ (c(action), c(target))
8: end for
9: return (c(r), LS)

Deployment of Permission Assignment Policies: An Admin User can assign permissions to
a role. In order to deploy policies regarding permissions assignment to roles, an Admin User
runs Algorithm 7. This algorithm takes as input a list of permissionsL to be assigned to role
r, the client side key setKui corresponding to Admin Useri and the public parametersparams
and outputs the client encrypted permission assignment list LCi assigned to client generated role
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c∗i (r). First, it generates client encrypted rolec∗i (r) by callingClientEnc illustrated in Algorithm
3 (Line 1). Next, it creates and initialises new listLCi (Line 2). For each permission inL (Line
3), it generates the client encrypted actionc∗i (action) (Line 4) and the client encrypted target
c∗i (target) (Line 5) and updatesLCi by adding the client encrypted permission (Line 6). An
Admin User sends the client encrypted permission list alongwith the client encrypted role to the
Administration Point. The Administration Point runs another round of encryption by running
Algorithm 8. This algorithm takes as input the client encrypted permission assignment listLCi

for client generated rolec∗i (r) and identityi of Admin User and outputs the server encrypted
permission assignment listLS and the server generated rolec(r). First, it retrieves from the Key
Store the server side key setKsi corresponding to Admin Useri (Line 1). Next, it generates
the server encrypted role by callingServerReEnc illustrated in Algorithm 4 (Line 2). Then,
it creates and initialises new listLS (Line 3). For each client encrypted role inLCi (Line 4),
it generates the server encrypted action (Line 5) and the server encrypted target (Line 6) and
updatesLS by adding the server encryption permission (Line 7).

Algorithm 9 ContextualConditionDeployment:ClientSide
Input: The contextual conditionT, the client side key setKui corresponding to Admin Useri and the public parametersparams.
Output: The client encrypted contextual conditionTCi .

1: TCi ← T
2: for each leaf nodee in TCi do
3: c∗i (e)← call ClientEnc (r, Kui , params)
4: replaceeof TCi with c∗i (e)
5: end for
6: return TCi

Algorithm 10 ContextualConditionDeployment:ServerSide
Input: The client encrypted contextual conditionTCi and identity of Admin Useri.
Output: The server encrypted contextual conditionTS

1: Ksi ← KS[i] {retrieve the server side key corresponding to Admin Useri}
2: TS ← TCi
3: for each client encrypted leaf nodec∗i (e) in TS do
4: c(e)← call ServerReEnc(c∗i (e), Ksi )
5: replacec∗i (e) of TS with c(e)
6: end for
7: return TS

Deployment of Contextual Conditions: The contextual condition (part of role assignment
and permission assignment policies) can be deployed in two steps. In the first step, an Admin
User performs a first round of encryption by running Algorithm 9. This algorithm takes as
input the contextual conditionT, the client side key setKui corresponding to Admin Useri
and the public parametersparamsand outputs the client encrypted contextual conditionTCi .
First, it copiesT to TCi (Line 1). For each leaf node inTCi (Line 2), it generates the client
encrypted element by callingClientEnc illustrated in Algorithm 3 (Line 3) and then updates
TCi by replacing elemente with the client encrypted elementc∗i (e) (Line 4). An Admin User
sends the client encrypted contextual condition to the Administration Point. In the second step,
the Administration Point performs another round of encryption by running Algorithm 10. This
algorithm takes as input the client encrypted contextual conditionTCi and identity of Admin User
i and outputs the server encrypted contextual conditionTS. First, it retrieves from the Key Store
the server side keyKsi corresponding to Admin Useri (Line 1). Next, it copiesTCi to TS (Line
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2). For each each client encrypted leaf node inTS (Line 3), it generates the server encrypted
element by callingServerReEncillustrated in Algorithm 4 (Line 4). Then, it replaces the client
encrypted elementc∗i (e) of TS with the server encrypted elementc(e) (Line 5).

Algorithm 11 RoleHierarchyDeployment:ClientSide
Input: The role hierarchy graphG, the client side key setKui corresponding to Admin Useri and the public parametersparams.
Output: The client generated role hierarchy graphGCi .

1: GCi ← G
2: for each noder in GCi do
3: c∗i (r)← call ClientEnc (r, Kui , params)
4: td∗i (r)← call ClientTD (r, Kui , params) {see Algorithm 13}
5: replacer of GCi with (c∗i (r), td∗i (r))
6: end for
7: return GCi

Algorithm 12 RoleHierarchyDeployment:ServerSide
Input: The client generated role hierarchy graphGCi and identity of Admin Useri.
Output: The server generated role hierarchy graphGS

1: Ksi ← KS[i] {retrieve the server side key corresponding to Admin Useri}
2: GS ← GCi
3: for each client generated node (c∗i (r), td∗i (r)) in GS do
4: c(r)← call ServerReEnc(c∗i (r), Ksi )
5: td(r)← call ServerTD (td∗i (r), Ksi ) {see Algorithm 14}
6: replace (c∗i (r), td∗i (r)) of GS with (c(r), td(r))
7: end for
8: return GS

Deployment of Role Hierarchy Graph: We know that a derived role inherits all permissions
from its base role. In case if requested permissions are not assigned to the Requester’s role, the
PDP may need to traverse in the role hierarchy graph to find base roles corresponding to the
Requester’s role and then PDP verifies if any base role can fulfil requested permissions. For this
purpose, the PDP needs a trapdoor of each base role so that it can match this trapdoor against
roles in the Permission Repository. Therefore, a role hierarchy graph stores a role trapdoor
along with each encrypted role. The deployment of role hierarchy graph takes place in two
steps. In the first step, an Admin User runs Algorithm 11. Thisalgorithm takes as input the
role hierarchy graphG, the client side key setKui corresponding to Admin Useri and the public
parametersparamsand outputs the client generated role hierarchy graphGCi . First, it copiesG
to GCi (Line 1). For each noder in GCi (Line 2), it generates the client encrypted role by calling
ClientEnc illustrated in Algorithm 3 (Line 3) and the client trapdoor by callingClientTD (Line
4) illustrated in Algorithm 13 that is explained later in this section. Next, it replacesr of GCi

with the client encrypted role and the client generated trapdoor (Line 5). An Admin User sends
the client generated role hierarchy graph to the Administration Point. In the second step, the
Administration Point runs Algorithm 12. This algorithm takes as input the client generated role
hierarchy graphGCi and identity of Admin Useri and outputs the server generated role hierarchy
graphGS. First, it retrieves from the Key Store the server side keyKsi corresponding to Admin
User i (Line 1). Next, it copiesGCi to GS (Line 2). For each client generated node (Line 3), it
generates the server encrypted role by callingServerReEncillustrated in Algorithm 4 (Line 4)
and the server trapdoor by callingServerTD (Line 5) illustrated in Algorithm 14 that is explained
later in this section and then updatesGS by replacing the client generated node with the server
generated node (Line 6).
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Algorithm 13 ClientTD
Input: Elemente, the client side key setKui corresponding to useri and the public parametersparams.
Output: The client generated trapdoortd∗i (e).

1: Choose a randomre ∈ Z
∗
q

2: σe← fs(e)
3: t1 ← g−regσe

4: t2 ← hreg−xi1regxi1σe = gxi2regxi1σe

5: td∗i (e)← (t1, t2)
6: return td∗i (e)

Algorithm 14 ServerTD
Input: The client generated trapdoortd∗i (e) and the server side key setKsi corresponding to useri.
Output: The server generated trapdoortd(e).

1: td(e)← t
xi2
1 .t2 = gxσe

2: return td(e)

6.3. Policy Evaluation Phase

The policy evaluation phase is executed when a Requester makes a request eitherACT or
REQ. In this phase, a Requester sends client generated trapdoors (using Algorithm 13) of a
request to the PEP. The PEP converts client generated trapdoors into server generated trapdoors
(using Algorithm 14) and sends them to the PDP. The PDP matches server encrypted trapdoors
of the request with server encrypted elements of the policy (using Algorithm 15). Optionally,
the PDP may require contextual information in order to evaluate contextual conditions. The PIP
sends client generated trapdoors of contextual information to the PDP. The PDP converts client
generated trapdoors into server generated trapdoors and then evaluates contextual conditions
based on contextual information. Finally, the PDP returns either trueor falseas shown in Figure
9. In the following, we describe how we generate trapdoors and perform the match.

For calculating client generated trapdoors of a request (orcontextual information), a Re-
quester (or the PIP) runsClientTD illustrated in Algorithm 13.ClientTD takes as input each
elementeof the request, the client side key setKui corresponding to useri and the public param-
etersparamsand outputs the client generated trapdoortd∗i (e). First, it choose randomlyre ∈ Z

∗
q

(Line 1). Next, it calculatesσe as fs(e) (Line 2). Then it calculatest1 and t2 asg−regσe (Line
3) andhreg−xi1regxi1σe = gxi2regxi1σe (Line 4), respectively. Botht1 and t2 form td∗i (e) (Line 5).
A Requester sends client generated trapdoors of the requestto the PEP. The PEP receives client
generated trapdoors and runsServerTD illustrated in Algorithm 14 for calculating server gener-
ated trapdoors.ServerTD takes as input the client generated trapdoortd∗i (e) and the server side
key setKsi corresponding to useri and outputs the server generated trapdoortd(e). It calculates
td(e) astxi2

1 .t2 = gxσe (Line 1).
In order to match a server encrypted element of a policy with aserver generated trapdoor

of a request, the PDP runsMatch illustrated in Algorithm 15.Match takes as input the server
encrypted elementc(e) = (c1, c2) and the server generated trapdoortd(e) = T and returns either

true or false. It checks the conditionc2
?
= H(c1.T−1) (Line 1). If the condition holds, it returns

true (Line 2) indicating that the match is successful. Otherwise, it returnsfalse(Line 4).
In the following, we describe how to evaluate (parts of) policies including role assignment,

permission assignment, contextual conditions and role hierarchy graph. For the evaluation of
each (part of) policy, we follow general strategy as alreadydescribed in this section and also
illustrated in Figure 9.
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Algorithm 15 Match
Input: The server encrypted elementc(e) = (c1, c2) and the server generated trapdoortd(e) = T.
Output: true or false

1: if c2
?
= H(c1.T−1) then

2: return true
3: else
4: return false
5: end if

Algorithm 16 SearchRole
Input: The client generated trapdoor of roletd∗i (r) and the server encrypted role assignment list (or list of active roles in session) LS for

Requesteri
Output: true or false

1: Ksi ← KS[i] {retrieve the server side key corresponding to Requesteri}
2: td(r)← call ServerTD (td∗i (r), Ksi )
3: for each server encrypted rolec(r) in LS do
4: match← call Match (c(r), td(r)) {see Algorithm 15}

5: if match
?
= true then

6: return true
7: end if
8: end for
9: return false

Searching a Role: A Requester can make a role activation requestACTand sends it to the SP.
In order to grantACT, the SP runsSearchRoleillustrated in Algorithm 16. This algorithm takes
as input the client generated trapdoor of roletd∗i (r) and the server encrypted role assignment list
LS for Requesteri. First, it retrieves from the Key Store the server side keyKsi corresponding to
Requesteri (Line 1). Next, it calculates the server generated trapdoortd(r) by calling Algorithm
14 (Line 2). For each server encrypted rolec(r) in LS (Line 3), it performs matching against
td(r) by calling Algorithm 15 (Line 4). If any match is successful(Line 5), it returnstrue (Line
6), meaning thatACT is granted. Otherwise, it returnsfalse(Line 9).

After ACT is granted, the PEP updates Session by adding in the Active Roles repository the
server generated trapdoor of role. Once a Requester is active in a role, she can make an access
requestREQ. Before grantingREQ, the SP checks if the Requester is already in the role inREQ.
For this purpose, the SP runs Algorithm 16, whereLS shows a list of active roles in the session.
Furthermore, the PDP also runs Algorithm 16 for searching the role inREQ in the Permission
Repository with a slight modification of ignoring the servertrapdoor generation (in Line 2) as it
is already generated when the role ofREQis searched in the session.

Searching a Permission: A Requester can sendREQfor executing certain permissions. The
PEP on the SP checks if the Requester is active in the role indicated inREQand then the searches
that role in the Permission Repository by running Algorithm16. After a role is matched in the
Permission Repository, the PEP searches the permission inREQby running Algorithm 17. This
algorithm takes as input the client generated trapdoor of permission (td∗i (action), td∗i (target) and
the server encrypted permission assignment listLS for Requesteri and returns eithertrueor false.
First, it retrieves from the Key Store from the Key Store the server side keyKsi corresponding to
Requesteri (Line 1). Next, it calculates server generated trapdoors ofboth action (Line 2) and tar-
get (Line 3) by calling Algorithm 14. For each server encrypted permission (c(action), c(target))
in LS (Line 4), it matches the server encrypted action with the server generated action (Line 5)
and the server encrypted target with the server generated taret (Line 6), respectively, by calling
Algorithm 15. If both matches are successful (Line 7) for anypermission (c(action), c(target))
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Algorithm 17 SearchPermission
Input: The client generated trapdoor of permission (td∗i (action), td∗i (target) and the server encrypted permission assignment listLS for

Requesteri
Output: true or false

1: Ksi ← KS[i] {retrieve the server side key corresponding to Requesteri}
2: td(action)← call ServerTD (td∗i (action), Ksi )
3: td(target)← call ServerTD (td∗i (target), Ksi )
4: for each server encrypted permission (c(action), c(target)) in LS do
5: matchaction← call Match (c(action), td(action))
6: matchtarget← call Match (c(target), td(target))

7: if matchaction
?
= true andmatchtarget

?
= true then

8: return true
9: end if
10: end for
11: return false

in LS, it returnstrue (Line 8). Otherwise, it returnsfalse(Line 11).

Algorithm 18 ContextualConditionRequest
Input: List of attributes contextual attributesL, the client side key setKui corresponding to Requesteri and the public parametersparams.
Output: The client generated list of trapdoors of contextual attributesLCi .

1: LCi ← φ
2: for each attributee in L do
3: td∗i (e)← call ClientTD (r, Kui , params)
4: LCi ← LCi ∪ td∗i (e)
5: end for
6: return TCi

Generating Contextual Attributes: The PIP runsContextualAttributesRequest illustrated
in Algorithm 18 to calculate client generated trapdoors of contextual information.Contextu-
alAttributesRequest takes as input a list of contextual attributesL, the client side key setKui

corresponding to Requesteri and the public parametersparamsand outputs the client generated
list of trapdoors of contextual attributesLCi . First, it creates and initialises new listLCi (Line
1). For each attributee in L (Line 2), it calculates the client generated trapdoortd∗i (e) by calling
Algorithm 13 (Line 3) and addstd∗i (e) in LCi (Line 4).

Evaluating Contextual Conditions: For evaluating any contextual condition, the PDP runs
ContextualConditionEvaluation illustrated in Algorithm 20. This algorithm takes as input the
client generated list of trapdoors of contextual attributes LCi , the server encrypted contextual
conditionTS and identity of Requesteri and returns eithertrue or false. First, it retrieves from
the Key Store the server side keyKsi corresponding to Requesteri (Line 1). Next, it creates and
initialises a new listLS (Line 2). For each client generated trapdoortd∗i (e) in LCi (Line 3), it
calculates the server generated trapdoortd(e) by calling Algorithm 14 (Line 4) and addstd(e) in
LS (Line 5). Next, it copiesTS to TREE(Line 7) and adds decision field to each node inTREE
(Line 8). For each noden in TREE(Line 9), it initialisesn.decisionasnull (Line 10). For each
leaf noden in TREE(Line 12), it checks if any server generated trapdoortd(e) in LS (Line 13)
matches with it by calling Algorithm 15 (Line 14). Next, it evaluates non-leaf nodes ofTREE
by running Algorithm 19 (Line 20). Finally, it returns either true or falsedepending upon the
evaluation ofTREE(Line 21).

EvaluateTreeevaluates a tree containing AND and OR gates. It takes as input root noden
and treeT and returns eithertrue or false. First, it checks if the decision forn is already made
(Line 1). If so, it returns the decision (Line 2). For each child c of n in tree T (Line 4), it
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Algorithm 19 EvaluateTree
Input: Noden and treeT.
Output: true or false.

1: if n.decision, null then
2: return n.decision
3: end if
4: for each childc of n in treeT do
5: call EvaluateTree(c, T) {recursive call}
6: end for
7: t ← 0
8: m← 0
9: for each childc of n in treeT do
10: t ← t + 1
11: if c.decision

?
= true then

12: m← m+ 1
13: end if
14: end for
15: if (n.gate

?
= AND andm

?
= t) or (n.gate

?
= ORandm≥ 1) then

16: n.decision← true
17: else
18: n.decision← f alse
19: end if
20: return n.decision

Algorithm 20 ContextualConditionEvaluation
Input: The client generated list of trapdoors of contextual attributesLCi , the server encrypted contextual conditionTS and identity of

Requesteri.
Output: true or false

1: Ksi ← KS[i] {retrieve the server side key corresponding to Requesteri}
2: LS ← φ
3: for each client generated trapdoortd∗i (e) in LCi do
4: td(e)← call ServerTD (td∗i (e), Ksi )
5: LS ← LS ∪ td∗i (e)
6: end for
7: TREE← TS

8: Add decision field to each node inTREE
9: for each noden in TREEdo
10: n.decision← null
11: end for
12: for each leaf noden in TREEdo
13: for each server generated trapdoortd(e) in LS do
14: n.decision← call Match (n.c(e), td(e))

15: if n.decision
?
= true then

16: return break;
17: end if
18: end for
19: end for
20: call EvaluateTree(TREE.root, TREE) {see Algorithm 19}
21: return TREE.root.decision
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recursively callsEvaluateTree(Line 5). Next, it creates and initialisest (Line 7) andm (Line 8)
indicating total children ofn and a count of matched children, respectively. For each child c of
n in treeT (Line 9), it counts total children (Line 10) and matched children by checking made
decisions (Line 12). Next, it checks if non-leaf node is AND and all children are matched or
non-leaf node is OR and at least one child is matched (Line 15). If so, it is set astrue (Line 16)
andfalse(Line 18) otherwise.

Algorithm 21 SearchRoleHierarchyGraph
Input: The server generated trapdoor of roletd(r) and the server generated role hierarchy graphGS

Output: true or false

1: for each server encrypted rolec(r) in GS do
2: match← call Match (c(r), td(r))

3: if match
?
= true then

4: return true
5: end if
6: end for
7: return false

Searching Roles in Role Hierarchy Graph: The PDP may need to search base roles of one in
REQsince a derived role inherits all permissions from its base role. The PDP runsSearchRole-
HierarchyGraph illustrated in Algorithm 21 to find base roles from the encrypted role hierarchy
graph. This algorithm takes as input the server generated trapdoor of roletd(r) and the server
generated role hierarchy graphGS and returnstrue if any base role is found andfalseotherwise.
For each server encrypted rolec(r) in GS (Line 1), it checks iftd(r) matches with anyc(r) by
calling Algorithm 15 (Line 2). If any match is found (Line 3),it returnstrue (Line 4). Otherwise,
it returnsfalse(Line 7).

Algorithm 22 UserRevocation
Input: The user identityi.
Output: true or false.

1: if exits(KS[i])
?
= f alsethen

2: return false
3: end if
4: Ksi ← KS[i]
5: KS← KS\Ksi
6: return true

6.4. Revocation Phase
In this phase, the PEP can remove a compromised user from the system. In order to remove

a user, the PEP runsUserRevocationillustrated in Algorithm 22. This algorithm takes as input
the user identityi and returns eithertrue (indicating that the user has been removed successfully)
or false (indicating that the user does not exist in the system). First, it checks if the given user
exists by checking the Key Store. If no, it returnsfalse(Line 2). Otherwise, it retrieves from the
Key Store the server side key setKsi corresponding to useri (Line 4), removesKsi from the Key
Store (Line 5) and returnstrue (Line 6).

7. Security Analysis

In this section, we analyse the security of the policy deployment phase that includes Role
Assignment (RA) encryption (Algorithms 5 and 6), Permission Assignment (PA) encryption
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(Algorithms 7 and 8), Contextual Condition (CC) encryption(Algorithms 9 and 10), and Role
Hierarchy (RH) encryption (Algorithms 11 and 12). We then analyse the security of the policy
evaluation phase that include Search Role (SR) (Algorithms13 and 16), Search Permission (Al-
gorithms 13 and 17), Contextual Condition Evaluation (Algorithms 18 and 20) and Search Role
Hierarchy (Algorithms 13, 14 and 21).

We first define some basic concepts on which we build our security proofs.

7.1. Preliminaries

In general, a scheme is considered secure if no adversary canbreak the scheme with prob-
ability significantly greater than random guessing. The adversary’s advantage in breaking the
scheme should be a negligible function of the security parameter.

Definition 1 (Negligible Function). A function f is negligible if for each polynomial p() there
exists N such that for all integers n> N it holds that f(n) < 1

p(n) .

We consider a realistic adversary that is computationally bounded and show that our scheme
is secure against such an adversary. We model the adversary as a randomised algorithm that runs
in polynomial time and show that the success probability of any such adversary is negligible. An
algorithm that is randomised and runs in polynomial time is called a Probabilistic Polynomial
Time (PPT) algorithm.

Our scheme relies on the existence of a pseudorandom function f . Intuitively, the output
a pseudorandom function cannot be distinguished by a realistic adversary from that of a truly
random function. Formally, a pseudorandom function is defined as:

Definition 2 (Pseudorandom Function). A function f : {0,1}∗×{0,1}∗ → {0,1}∗ is pseudorandom
if for all PPT adversariesA, there exists a negligible function negl such that:

|Pr[A fk(·) = 1] − Pr[AF(·) = 1]| < negl(n)

where k→ {0,1}n is chosen uniformly randomly and F is a function chosen uniformly randomly
from the set of function mapping n-bit strings to n-bit strings.

Our proof relies on the assumption that the Decisional Diffie-Hellman (DDH) is hard in a
groupG, i.e., it is hard for an adversary to distinguish between group elementsgαβ andgγ given
gα andgβ.

Definition 3 (DDH Assumption). The DDH problem is hard regarding a groupG if for all
PPT adversariesA, there exists a negligible function negl such that|Pr[A(G,q,g,gα,gβ,gαβ) =
1] − Pr[A(G,q,g,gα,gβ,gγ) = 1]| < negl(k) whereG is a cyclic group of order q(|q| = k) and g
is a generator ofG, andα, β, γ ∈ Zq are uniformly randomly chosen.

Encryption algorithms in policy deployment phase are basedon ClientEnc and Server-
ReEnc functions that is equivalent to encrypting a single keywordin the SDE scheme [13].
Dong et al. [13] show that the single keyword encryption scheme is indistinguishable under
chosen plaintext attack (IND-CPA). A cryptosystem is considered IND-CPA secure if no PPT
adversary, given an encryption of a message randomly chosenfrom two plaintext messages cho-
sen by the adversary, can identify the message choice with non-negligible probability. Donget
al. [13] prove the following theorem about the single Keyword Encryption (KE) scheme:
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Theorem 1. If the DDH problem is hard relative toG, then the single keyword encryption
scheme KE is IND-CPA secure against the server S, i.e., for all PPT adversariesA there exists
a negligible function negl such that:

S uccAKE,S(k) = Pr
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Proof. See Theorem 1 in [13].

7.2. Security of Encryption Algorithms in the Policy Deployment Phase

Using the fact that theKE scheme is IND-CPA secure, we show that the four encryption
schemes: RA, PA, CC and RH are also IND-CPA against the server. We give the proof details
for the Roles Assignment encryption schemeRA. We will show that the following theorem holds:

Theorem 2. If the single keyword encryption KE scheme is IND-CPA secureagainst the server,
then the RA encryption scheme RA is also IND-CPA, i.e., for all PPT adversariesA, there exists
a negligible function negl such that S uccARA,S(k) < 1

2 + negl(k).

Proof. We prove the theorem by showing that breaking theRAencryption reduces to breaking
theKE encryption. We define the following game in which the adversaryA challenges the game
with two lists of rolesL0 andL1 having the same number of rolest. We construct the following
vector containing the encryption of roles from both lists:~C(i) = C(r1

0), . . . ,C(r i
0),C(r i+1

1 ), . . . ,C(r t
1).

The success probability of the adversary in distinguishingthe encryption of the two lists of roles
is defined as:

S uccA(k) =
1
2

Pr[A( ~C0) = 0] +
1
2

Pr[A( ~Ct) = 1] (2)

In the following, we show that breaking theRA scheme reduces to breaking theKE game.
In theKE game from [13], the adversary challenges the game with two keywordsw0 andw1 and
tries to distinguish between their encryptions. Let us consider a PPT adversaryA′ who attempts
to challenge the single keyword encryption schemeKE using the correspondingRAadversaryA
as a sub-routine The game is the following:

• A′ is given the parameters (G,q,g,h,H, f ) as input and for each useri is given (i, xi2).

• A′ passes these parameters toA.

• A generates two lists of rolesL0 andL1 having the same number of rolest and gives them
toA′.

• A′ choosesi
r
←− [1, t]. It then usesr i

0, r
i
1 to challenge the single keyword encryptionKE

game. The adversary gets backci
b as the result, whereci

b is the encryption of eitherr i
0 or

r i
1. A′ uses this result to construct a hybrid vector (c1

0, . . . , c
i−1
0 , c

i
b, c

i+1
1 , . . . , c

t
1) and sends

it toA.
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• A′ outputsb′, the bit output byA.

A is required to distinguish~C(i) and~C(i−1) and the probability ofA’s success in distinguishing
correctly is:

S ucciA(k) =
1
2

Pr[A( ~C(i)) = 0] +
1
2

Pr[A( ~C(i−1)) = 1] (3)

Becausei is randomly chosen, it holds that:

S uccA′ (k) =
∑t

i=1 S ucci
A

(t) · 1
t

= 1
2t Pr[A( ~C0) = 0] +

∑t−1
i=1(Pr[A( ~Ci) = 0]

+Pr[A( ~Ci) = 1]) + 1
2Pr[A( ~Ct) = 1]

= 1
t ( 1

2Pr[A( ~C0) = 0] + 1
2Pr[A( ~Ct) = 1]) + t−1

2t
= 1

t S uccA(k) + t−1
2t

(4)

Because the success probability ofA′ to break the single keyword encryption scheme is
S uccA′ (k) < 1

2 + negl(k), it follows thatS uccA(k) < 1
2 + negl(k).

The proof for the other encryption schemes is similar and forlack of space we do not show
all the details.

7.3. Security of Algorithms in the Policy Evaluation Phase
We now analyse the security of SR, Search Permission, Contextual Condition Evaluation

and Search Role Hierarchy. These algorithms require the SP to take some client input (i.e.,
trapdoors computed using Algorithm 13), process it (i.e., re-encrypt it using Algorithm 14), and
test whether it matches some information stored on the server. Though a single operation has
been proved secure, we are interested in what these algorithms leak to the SP. We follow the
concept of non-adaptive indistinguishability security introduced for encrypted databases by [9]
and adapted by [13] in a multi-user setting. We show that given two non-adaptively generated
histories with the same length and outcome, no PPT adversarycan distinguish the histories based
on what it can observe from the interaction. A history contains all the interactions between
clients and the SP. Non-adaptive history means that the adversary cannot choose sequences of
client inputs based on previous inputs and matching outcomes.

In the following, we show the details for the SR scheme. In this scheme, a history is defined
as follows:

Definition 4 (SR History). An SR historyHi is an interaction between a SP and all clients that
connect to it, over i role activation requests.Hi = (Lu1

s , . . . , L
ui
s , r

u1
1 , . . . , r

ui
i ), where ui represents

an identifier of the client making the requests, Lui
s represents the lists of roles for client ui , and rui

i
represents the request made by the client.

We formalise the information leaked to a SP as atrace. We define two kinds of traces: the
trace of a single request and the trace of a history. The traceof a request leaks to the SP which
role inLi

s matches the request and can be formally defined as:tr(r) = {td∗i (role), Li
s, idx}, where

idx is the index of the matched role, if any, inLi
s.

We define the role matching patternP over a historyHi to be a set of binary matrices (one
for each client) with columns corresponding to encrypted roles in the list of the client, and rows
corresponding to requests.P[ j, k] = 1 if requestj matched thek’s role andP[ j, k] = 0 otherwise.

The trace of a history includes the encrypted role assignment lists of all clientsLui
s stored by

the SP and which can change as new roles are added and clients leave of join the system, the
trace of each request, and the role matching patternPi for each client.
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During an interaction, the adversary cannot see directly the plaintext of the request, instead
it sees the ciphertext. The view of a request is defined as:

Definition 5 (View of a Request). We define the view of a request qu1
1 under a key set Kui as:

VKui (q
ui ) = tr(qui )

Definition 6 (View of a History). We define the view of a history with i interactionsHi as
VKu(Hi) = (Lu1

s , . . . , L
ui
s ,VKui (q

ui

1 ), . . . ,VKui (q
ui
i ).

The security definition is based on the idea that the scheme issecure if nothing is leaked to
the adversary beyond what the adversary can learn from traces.

We define the following game in which an adversaryA generates two historiesHi0 andHi1

with the same trace overi requests. Then the adversary is challenged to distinguish the views of
the two histories. If the adversary succeeds with negligible probability, the scheme is secure.

Definition 7 (Non-adaptive indistinguishability against a curious SP). The SR scheme is secure
in the sense of non-adaptive indistinguishability againsta curious SP if for all i∈ N and for all
PPT adversariesA there exists a negligible function negl such that:
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+ negl(k) (5)

where U is a set of user IDs, Ku is the user side key sets, Ks are the server side key sets,Hi1 and
Hi0 are two histories over i requests such that Tr(Hi0) = Tr(Hi1).

Theorem 3. If the DDH problem in hard relative toG, then the SR scheme is a non-adaptive
indistinguishable secure scheme. The success probabilityof a PPT adversaryA in breaking the
SR scheme is defined as:

S uccA(k) = 1
2Pr[A(RA(~L0),T D(~r0)) = 0]+
1
2Pr[A(RA(~L1),T D(~r1)) = 1]

< 1
2 + negl(k)

(6)

where RA(~Li) is the role encryption of the vector of lists of Hi , and T D(~r i) is theClientTD of the
roles in the requests of Hi .

Proof. We consider an adversaryA′ that challenges the RE IND-CPA game usingA as a
sub-routine.A′ does the following:

• A′ receives public parametersparamsand the server side (i, xi2) keys.

• To generate a view of a historyHi = (Lu1
1 , . . . , L

ui
i ,q

u1
1 , . . . ,q

ui
i ). A′ performs the following

steps:

– For each role assignment listL
u j

j , run Algorithm 5 to encrypt it asRA(L
u j

j ).

– For each Search Role requestq
u j

j , runClientT D to generate the trapdoorT D(r) for
the role.

24



• A outputsHi0,Hi1. A′ encryptsHi1 by itself and challenges the RE IND-CPA game with
~L0 and~L1, the vectors of all roles lists in the two histories. It gets the resultRA(~Lb) where

b
R
←− {0,1} and forms a view of a history (RA(~Lb),T D(~r1)). It sends the view toA.

• A tries to determine which vector was encrypted and outputsb′ ∈ {0,1}.

• A′ outputsb′.

Because theRAscheme is IND-CPA, it follows that:

1
2 + negl(k) > S uccA

′

RA(k)
= 1

2Pr[A((RA(~L0),T D(~r1))) = 0]+
1
2Pr[A((RA(~L1),T D(~r1))) = 1]

(7)

Now let us consider another adversaryA′′ who wants to distinguish the pseudorandom func-
tion f usingA as a sub-routine. The adversary does the following:

• It generates (G,q,g,h,H) as public parameters, and sends them toA along with f . For
each useri, it chooses randomlyxi1, xi2 such thatxi1+ xi2 = x. It sends all (i, xi2) toA and
keeps all (i, xi1, xi2).

• A outputsHi0,Hi1. A′′ encrypts all the roles lists inHi0 asRA(~L0). It choosesb
R
←− {0,1}

and asks the oracle to encrypt all roles inHib. It combines the results to form a view
(RA(~L0),T D(~rb)) and returns it toA.

• A outputsb′. A′′ outputs 1 ifb′ = b and 0 otherwise.

There are two cases to consider: Case 1: the oracle inA′′s game is the pseudorandom
function f , then:

Pr[A′′ fs(.)(1k) = 1] =
1
2Pr[A(RA(~L0),T D(~r0)) = 0]+
1
2Pr[A(RA(~L0),T D(~r1)) = 1]

(8)

Case 2: the oracle inA′′s game is a random functionF, then for each distinct roler, σr is
completely random toA. Moreover, we know the traces are identical, soRA(~Lb) andT D(~rb) are
completely random toA. In this case:

Pr[A′′ fs(.)(1k) = 1] =
1
2

(9)

Becausef is a pseudorandom function, by definition it holds that:

|Pr[A′′ fs(.)(1k) = 1] − Pr[A′ fs(.)(1k) = 1]| < negl(k)
Pr[A′′ fs(.)(1k) = 1] < 1

2 + negl(k)
(10)

Sum upS uccA
′

RE(k) andPr[A′′ fs(.)(1k) = 1]:
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1+ negl(k) > 1
2Pr[A(RA(~L0),T D(~r0)) = 0]+
1
2Pr[A(RA(~L0),T D(~r1)) = 1]+
1
2Pr[A(RA(~L0),T D(~r1)) = 0]+
1
2Pr[A(RA(~L1),T D(~r1)) = 1]

= 1
2Pr[A(RA(~L0),T D(~r0)) = 0]+
1
2+
1
2Pr[A(RA(~L1),T D(~r1)) = 1]+

= 1
2 + S uccA(k)

(11)

ThereforeS uccA(k) < 1
2 + negl(k).

7.4. Revealing Policy Structure

The policy structure reveals information about the operators, such as AND and OR, and
the number of operands used in the contextual condition. To overcome this problem, dummy
attributes could be inserted in the tree representing contextual conditions. Similarly, the PIP can
send dummy attributes to the PDP at the time of policy evaluation to obfuscate the number of
attributes required for evaluating any contextual condition.

8. Performance Analysis

In this section, we discuss a quantitative analysis of the performance ofESPOONERBAC. It
should be noticed that here we are concerned about quantifying the overhead introduced by the
encryption operations performed both at the trusted environment and the outsourced environ-
ment. In the following discussion, we do not take into account the latency introduced by the
network communication.

8.1. Implementation Details

We have implementedESPOONERBAC in Java 1.6. We have developed all the components of
the architecture required for performing the policy deployment and policy evaluation phases. For
the cryptographic operations, we have implemented all the functions presented in Section 6. We
have tested the implementation ofESPOONERBACon a single node based on an Intel Core2 Duo
2.2 GHz processor with 2 GB of RAM, running Microsoft Windows XPProfessional version
2002 Service Pack 3.

8.2. Performance Analysis of the Policy Deployment Phase

In this section, we analyse the performance of the policy deployment phase. In this phase,
an Admin User encrypts policies and sends those encrypted policies to the Administration Point
running in the outsourced environment. The AdministrationPoint re-encrypts policies and stores
them in the Policy Store in the outsourced environment. In the following, we analyse the perfor-
mance of deploying (part of) policies including role assignment, permission assignment, contex-
tual conditions and role hierarchy graph.

Role Assignment: In order to deploy a role assignment policy, an Admin User performs
a first round of encryption on the client side (see Algorithm 5) and sends the client encrypted
role assignment policy to the Administration Point. The Administration Point performs another
round of encryption on the server side (see Algorithm 6) before storing role assignment policy in
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the Policy Store. Figure 10(a) shows performance overhead on the client side, as well as on the
server side in order to deploy a role assignment policy. In this graph, we observe the performance
by increasing number of roles in a role assignment policy. Aswe can expect, the performance
overhead increases linearly with the linear increase in thenumber of roles in a role assignment
policy. As we can notice, the graph grows linearly with the linear increase in the number of roles
in the role assignment policy.

During the policy deployment phase, the encryption algorithm on the client side (Algorithm
3) takes more time that of the server side (Algorithm 4) as shown in Figure 10. The encryption
algorithm on the client side takes more time because it performs more complex cryptographic
operations such as random number generation and hash calculation as illustrated in Algorithm
3. However, any policy is deployed very rarely; whereas, it may be evaluated quite frequently.
Therefore, the performance overhead of the policy evaluation phase (discussed in Section 8.3) is
of great importance.

Permission Assignment: For deploying permissions to a role, an Admin User performs afirst
round of encryption on the client side (see Algorithm 7) and sends both the client encrypted role
and client encrypted permissions to the Administration Point, where each permission contains
both an action and a target. The Administration Point generates the server encrypted role and
server encrypted permissions after performing a second round of encryption on the server side
(see Algorithm 8). Figure 10(b) shows the performance overhead of deploying a permission
assignment policy. This graph illustrates the performanceof deploying a permission assignment
policy for a role with a number of permissions ranging from 1 to 20. As we can expect, the
performance overhead increases linearly with the linear increase in the number of permissions in
the permission assignment policy.

Contextual Conditions: Both role assignment and permission assignment policies include a
contextual condition as we can see in Figure 2 and Figure 3, respectively. The contextual con-
dition is represented as a tree structure as illustrated in Figure 4. During the policy deployment
phase, an Admin User encrypts each leaf node of the tree (see Algorithm 9) while the Admin-
istration Point re-encrypts each leaf node (see Algorithm 10) and finally stores the tree in the
Policy Store either in the Role Repository or the PermissionRepository.

In the tree representing contextual conditions, leaf nodesrepresent string comparisons (for
instance,Location= Cardiology-ward) and/or numerical comparisons (for instance,AccessTime
> 9). A string comparison is always represented by a single leafnode while a numerical com-
parison may require more than one leaf nodes. In the worst case, a single numerical comparison,
represented ass bits, may requires separate leaf nodes. Therefore, numerical comparisons have
a major impact on the encryption of a policy at deployment time.

Figure 11(a) illustrates the performance overhead of deploying numerical and string compar-
isons. In this graph, we increase the number of string comparisons and numerical comparisons
present in the contextual condition of a policy. As the graph, the time taken by deployment
functions on the client side and the server side grow linearly with the number of comparisons in
the contextual condition. The numerical comparisons have astepper line because one numerical
comparison of sizes may be equivalent tos string comparisons in the worst case. For string
comparisons, we have used “attributeNamei=attributeValuei”, wherei varies from 1 to 10. For
numerical comparisons, we have used “attributeNamei < 15#4”.2

2It should be noted that using the comparison less than 15 in a 4-bit representation represents the worst case scenario
requiring 4 leaf nodes.
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To check how the size of the bit representation impacts on theencryption functions during
the deployment phase, we have performed the following experiment. We fixed the number of
numerical comparisons in the contextaul condition to only one and increased the sizesof the bit
representation from 2 to 20 for the comparison “attributeName< 2s − 1. Figure 11(b) shows
the performance overhead of the encryption during the policy deployment phase on the client
side, as well as on the server side. We can see that the policy deployment time incurred grows
linearly with the increase in the sizes of a numerical attribute. In general, the time complexity
of the encryption of the contextual conditions during the policy deployment phase isO(m+ ns)
wherem is the number of string comparisons,n is the number of numerical comparisons, ands
represents the number of bits in each numerical comparison.

Role Hierarchy Graph: The PDP may search for a base role of the one in the access request
REQsince a derived role inherits all permissions from its base role. For supporting this search,
we deploy a role hierarchy graph. For deploying a role hierarchy graph, an Admin User performs
the first round in order to generate the client encrypted trapdoor, as well as to calculate the client
generated trapdoor of each role in the graph (see Algorithm 11). The Admin User sends the client
generated role hierarchy graph to the Administration Point. The Administration Point performs
the second round to generate the server encrypted trapdoor,as well as to calculate the server
generated trapdoor of each role in the graph (see Algorithm 12). The PDP matches the trapdoor
of role inREQwith the server encrypted role and if this match is successful, it finds trapdoors of
the base roles. The trapdoors of base roles are required in order to perform search in the list of
server encrypted roles in the Permission Repository.

In our experiment, we consider a role hierarchy graph in which each roleRi extends roleRi+1

for all values ofi from 0 ton− 1 wheren indicates the total number of nodes and varies from 5
to 25. Figure 10(c) shows the performance overhead of encrypting a role hierarchy graph both
on the client side and the server side. The graph grows linearly with the number of roles in a role
hierarchy graph.

Table 1: Performance overhead of encrypting requests duringthe policy evaluation phase
Request Type Time (in milliseconds)

ACT 16.353
REQ 47.069

8.3. Performance Analysis of the Policy Evaluation Phase

In this section, we analyse the performance of the policy evaluation phase. In this phase, a
Requester sends the encrypted request to the PEP running in the outsourced environment. The
PEP forwards the encrypted request to the PDP. The PDP has to select the set of policies that
are applicable to the request. The PDP may require contextual information in order to evaluate
the selected policies. In the following, we calculate the performance overhead of generating
requests, search a role (in the Role Repository, in the Active Roles repository or in the Permission
Repository), searching a permission, evaluating contextual conditions and searching a role in a
role hierarchy graph.

Generating Requests: A Requester may send the role activation requestACT. In order to
generateACT, a Requester calculates the client generated role (see Algorithm 13). This trapdoor
generation of role takes 16.353 milliseconds as illustrated in Table 1. After a Requester is active
in a role, she may make an access requestREQ . A Requester has to calculate trapdoor for
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each element (including role, action and target) inREQ. The REQ generation takes 47.069
milliseconds as illustrated in Table 1. We can see thatREQgeneration takes 3 times ofACT
generation becauseREQhas to calculate 3 trapdoors whileACT has to generate only a single
trapdoor. The request generation does not depend on any parameters and can be considered
constant.

Searching a Role in Role Repository/Session: In order to grantACT, the PDP needs to
search roles in the Role Repository. For searching a role, the PDP first calculates the server
generated trapdoor of role inACT and then matches this server encrypted trapdoor with server
encrypted roles in the role assignment list as illustrated in Algorithm 16. Figure 12(a) shows
the performance overhead (in the worst case) of performing this search. In this graph, we can
observe that it grows linearly with increase in number of roles. As the graph indicates, the search
function takes initial approximately 4 milliseconds to generate the server encrypted trapdoor of
role inACT while it takes approximately 0.6 milliseconds to perform encrypted match.

The PDP grantsACTby adding the server encrypted role of the Requester in the Active Roles
repository of the Session. This implies that the Session maintains a list of active roles. Once a
Requester makes an access requestREQ, the PDP has to search in the Session if she is already
active in role indicated inREQ. The performance overhead of searching a role in session is same
as it incurs for searching a role in the Role Repository (shown in Figure 12(a)).

Searching a Role in Permission Repository: After finding the role ofREQin the list of active
roles, the PDP has to search if the same role has the requestedpermission. For this purpose, the
PDP has first to search the role ofREQin the Permission Repository and if any match is found, it
has to search the requested permission in the list of permissions assigned to the found role. Figure
12(b) shows the performance overhead (in the worst case) of searching a role in the Permission
Repository. The graph grows linearly with the increase in the number of roles in the Permission
Repository. The PDP runs Algorithm 16 but with a slight modification of ignoring the server
trapdoor generation (in Line 2) as it is already generated when the role ofREQ is searched in
the session. This is why, searching a role in the Permission Repository (as illustrated in Figure
12(b)) takes less time than searching a role in the Role Repository or Session (as illustrated in
Figure 12(a)).

Searching a Permission: After a role is found in the Permission Repository, the PDP searches
the requested permission in the list of permissions assigned to the found role (see Algorithm 17).
Before searching the list of permissions, the PDP has to calculate server generated trapdoors of
both the action and the target present inREQ. As we explained earlier, a single trapdoor gen-
eration on the server side takes approximately 4 milliseconds. The trapdoor generation of the
requested permission, containing an action and a target, takes 8 milliseconds. Next, the PDP
match (server generated trapdoors of) this requested permission with the list of (sever encrypted)
permissions assigned to the found role. Figure 12(c) shows the performance overhead (in the
worst case) of searching server generated trapdoor of permission with a list of server encrypted
permissions. The graph grows linearly with the increase in the number of permissions in the list.
For each permission match, the PDP performs (at most) two encrypted matches each incurring
approximately 0.6 milliseconds.

Evaluating Contextual Conditions: For evaluating role assignment (illustrated in Figure
2) or permission assignment (illustrated in Figure 3) policies, the PDP may need to evaluate
contextual conditions. For evaluating contextual conditions, the PDP needs to fetch contextual
information from the PIP. The The PIP is responsible to collect and send the required contextual
information that include information about the Requester (for instance, Requester’s location or
Requester’s age) or the environment in which the request is made (for instance, time or tempera-
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ture). The PIP transforms these attributes into trapdoors before sending to the PDP (as illustrated
in Algorithm 18). For each single string attribute (for instance,Location:= Cardiology-ward),
the PIP generates a single trapdoor. For each numerical attribute of size s-bit (for instance,
AccessTime=: 10#5), the PIP generates s trapdoors. Figure 13(a) shows the performance over-
head of generating trapdoors by the PIP on the client side forboth numerical and string attributes.
In our experiment, we vary number of attributes (both stringand numeric) from 1 to 10. As we
can see, the graph grows linearly with the increase in numberof attributes. For numerical at-
tributes, the curve of trapdoor generation on the client side is steeper than that of the string
attributes because numerical attribute is of size s bits where s is set to 4. This means that each
numerical attribute requires 4 trapdoors; on the other hand, a string attribute requires only a
single attribute. We observe also the behaviour of generating client trapdoors for a numerical
attribute of varying size. Figure 13(b) shows behaviour of generating on the client side trapdoors
of a numerical attribute of varying size ranging from 2 to 20 bits. This graph grows linearly with
the increase in number of bits, representing size of a numerical attribute.

After receiving trapdoors of contextual information, the PDP may evaluate a contextual con-
dition. To evaluate the tree representing a contextual condition, the PDP matches contextual
information against the leaf nodes in the tree, as illustrated in Algorithm 20. To quantify the
performance overhead of this encrypted matching, we have performed the following test. First,
we have considered two cases: the first case is the one in whichthe PIP provides only string
attributes and the contextual condition contains only string comparisons; in the second, the PIP
provides only numerical attributes and the contextual condition consists only of numerical com-
parisons. For both cases, the number of attributes varies together with the number of comparisons
in the tree. In particular, if the PIP providesn different attributes then the contextual condition
will containn different comparisons.

Figure 13(a) shows also the performance overhead of evaluating string and numerical com-
parisons on the server side. As we can see, the condition evaluation for numerical attributes has
a steeper curve. This can be explained as follows. For the first case, for each string attribute only
a single trapdoor is generated. A string comparison is represented as a single leaf node in the tree
representing a contextual condition. This means thatn trapdoors in a request are matched against
m leaf nodes in the tree resulting in aO(nm) complexity (however, in our experiments the number
of attributes and the number of comparisons are always the same). For the case of the numerical
attributes, we have also to take in to consideration the bit representation. In particular, for a give
numerical attribute represented ass bits, we need to generates different trapdoors. This means
thatn numerical attributes in a request will be converted in tonsdifferent trapdoors. These trap-
doors then need to be matched against the leaf nodes representing the numerical comparisons.
Figure 13(b) shows the performance overhead of evaluating anumerical comparison where the
size of a numerical attribute varies from 2 to 20. As we have discussed for the policy deployment
phase, in the worst case scenario, a numerical comparison for a s-bit numerical attribute requires
s different leaf nodes. In a tree withm different numerical comparisons, this means that thens
trapdoors need to be matched againstmsresulting inO(nms2) complexity.

Searching a Role Hierarchy Graph: The PDP may search a role in the role hierarchy graph.
For performing this search, we consider a role hierarchy graph in which each roleRi extends role
Ri+1 for all values ofi from 0 ton−1 wheren indicates the total number of nodes and varies from
5 to 25. Figure 12(d) shows the performance overhead of searching a role in the role hierarchy
graph deployed on the server side. As we can expect, the graphgrows linearly with the number
of roles in a role hierarchy graph.

Comparing ESPOONERBAC with ESPOON: We compare the performance overheads of the
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policy evaluation ofESPOONERBACwith that ofESPOON[1]. Before we show the comparison,
we see how policies are expressed in bothESPOONERBAC andESPOON. TheESPOONERBAC

policies are explained in Section 4.2. TheESPOONpolicy is expressed as a〈S,A,T〉 tuple
with a CONDITION, meaning ifCONDITION holds then subjectS can take actionA over
targetT. For comparing the performance overheads, we considerESPOONpolicies with 50
unique subjects and each subject has 10 unique actions and targets where each〈S,A,T〉 tu-
ple’s condition is the conjunction (AND) of the contextual condition illustrated in Figure 4 and
RequesterName=<NAME>. That is, a subject can execute action over the target provided sub-
ject’s name is equal to one specified in the condition, subject’s location is cardiology-ward and
time is between 9 AM and 5 PM. Similarly, we considerESPOONERBACpolicies with 50 unique
roles and each role has 10 unique permissions, where each user can get active in 5 roles. The
introduction of RBAC simplifies the roles and permission management because we can enforce
possible conditions at role activation time instead of enforcing them at the permission grant time.
For instance, we can enforce location and time checks (i.e.,the condition illustrated in Figure 4)
at the role activation time while the conditionRequesterName=<NAME> can be enforced at the
permission grant time.

Figure 14 shows the performance overheads of evaluatingESPOONandESPOONERBACpoli-
cies. InESPOON, a requester’s subject is matched with one in the repositoryof 500 entries (i.e.,
50 subjects each with 10 actions and targets). If there is anymatch, requester’s action and target
are matched and then condition is evaluated. In the worst case, inESPOON, the access request
processing can take approximately up to 500 milliseconds. On the other hand, inESPOONERBAC,
a requester first gets active in a role provided condition holds. The role activation can take
approximately up to 60 milliseconds for a user that can get active in 5 roles. After the role acti-
vation, a requester can be granted permissions assigned to its role. However, first the active role
is searched in the session and then the permission can be granted if the condition associated with
that permission holds. As we can see in Figure 14, grating thepermission takes up to 42 mil-
liseconds. The reason whyESPOONERBACperformance is better than that ofESPOONbecause
(i) all possible conditions are enforced at the role activation time and (ii) introduction of roles
simplified the roles and permissions management.

We also consider the effect of role hierarchies on theESPOONERBACperformance. In a role
hierarchy, we assume that a role can inherit all permissionsfrom its base role. This simplifies
the role management and permission assignment to roles. In our experimentation, we consider
50 roles where each role has 5 permissions. Furthermore, there is a role hierarchy graph con-
taining 25 roles, which is necessary for finding inheritancerelationship between roles. Figure 14
shows a very slight performance gain to evaluate the access request in case of role hierarchy in
ESPOONERBAC. Since the permission can be associated with base role, we need to traverse in the
role hierarchy graph to find base roles. The performance of traversing in the role hierarchy graph
is shown in Figure 14. Finally, the requested permission is granted if associated even with any
base roles. The role hierarchy may improve performance but in the worst case it incurs higher
overhead. However, the performance ofESPOONERBAC with role hierarchy is still better than
that ofESPOON.

9. Conclusions and Future Work

In this paper, we have presented theESPOONERBACarchitecture to support RBAC policies for
outsourced environments. Our approach separates the security policies from the actual enforcing
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mechanism while guaranteeing the confidentiality of RBAC policies assuming the SP is honest-
but-curious. The main advantage of our approach is that RBACpolicies are encrypted but it
still allows the PDP to perform the policy evaluation without revealing contents of requests or
policies. Second,ESPOONERBACis capable of handling complex contextual conditions involving
non-monotonic boolean expressions and range queries. Finally, the authorised users do not share
any encryption keys making the process of key management very scalable. Even if a user key is
deleted or revoked, the other entities are still able to perform their operations without requiring
re-encryption of RBAC policies.

As future directions of our research, we are working on integrating a secure audit mechanism
in ESPOONERBAC. The mechanism should allow the SP to generate genuine auditlogs without
allowing the SP to get information about both the data and thepolicies. However, an auditing
authority must be able to retrieve information about who accessed the data and what policy was
enforced for any access request made. Another direction of our work is towards the extension of
the encrypted search and match capabilities to handle the case of negative authorisation policies
and policies for long-lived sessions where the conditions need to be continuously monitored and
the attributes of the request can be dynamically updated.
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Figure 1: TheESPOONERBACarchitecture for enforcing RBAC policies in outsourced environments

if 〈CONDITION〉 then 〈US ER〉 can be active in 〈{R1,R2, . . . ,Rn}〉

Figure 2: RBAC Policy: Role assignment

if 〈CONDITION〉 then 〈R〉 can execute 〈{(A1,T1), (A2,T2), . . . , (An,Tn)}〉

Figure 3: RBAC Policy: Permission assignment
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Figure 4: An example of contextual condition illustratingLocation= Cardiology-ward andAT > 9#5 andAT < 17#5

36



R1 extends 〈{Ri ,Rii , . . . ,Rk1 }〉

R2 extends 〈{Ri ,Rii , . . . ,Rk2 }〉

.

.

.
Rn extends 〈{Ri ,Rii , . . . ,Rkn }〉

Figure 5: RBAC Policy: Role hierarchy
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Figure 10: Performance overhead of deploying RBAC policies:(a) roles assigned to a user, (b) permissions to a role and
(c) a role hierarchy graph
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Figure 12: Performance overhead of evaluating RBAC policies
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Figure 13: Performance overhead of evaluating contextual conditions
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